New Search Search History

Holdings Information

    Quantum mechanics : a paradigms approach / David H. McIntyre ; with contributions from Corinne A. Manogue, Janet Tate and the Paradigms in Physics group at Oregon State University.

    • Title:Quantum mechanics : a paradigms approach / David H. McIntyre ; with contributions from Corinne A. Manogue, Janet Tate and the Paradigms in Physics group at Oregon State University.
    •    
    • Author/Creator:McIntyre, David H.
    • Other Contributors/Collections:Manogue, Corinne A.
      Tate, Janet.
      Oregon State University.
    • Published/Created:Boston : Pearson, ©2012.
    • Holdings

       
    • Library of Congress Subjects:Quantum theory.
      Mechanics.
    • Description:xxi, 570 p. : ill. ; 24 cm.
    • Notes:Includes bibliographical references and index.
    • ISBN:9780321765796 (hbk.)
      0321765796 (hbk.)
    • Contents:Machine generated contents note: 1. Stern-Gerlach Experiments
      1.1. Stern-Gerlach Experiment
      1.1.1. Experiment 1
      1.1.2. Experiment 2
      1.1.3. Experiment 3
      1.1.4. Experiment 4
      1.2. Quantum State Vectors
      1.2.1. Analysis of Experiment 1
      1.2.2. Analysis of Experiment 2
      1.2.3. Superposition States
      1.3. Matrix Notation
      1.4. General Quantum Systems
      1.5. Postulates
      Summary
      Problems
      Resources
      Activities
      Further Reading
      2. Operators and Measurement
      2.1. Operators, Eigenvalues, and Eigenvectors
      2.1.1. Matrix Representation of Operators
      2.1.2. Diagonalization of Operators
      2.2. New Operators
      2.2.1. Spin Component in a General Direction
      2.2.2. Hermitian Operators
      2.2.3. Projection Operators
      2.2.4. Analysis of Experiments 3 and 4
      2.3. Measurement
      2.4. Commuting Observables
      2.5. Uncertainty Principle
      2.6. S2 Operator
      2.7. Spin-1 System
      2.8. General Quantum Systems
      Summary
      Problems
      Resources
      Activities
      3. Schrodinger Time Evolution
      3.1. Schrodinger Equation
      3.2. Spin Precession
      3.2.1. Magnetic Field in the z-Direction
      3.2.2. Magnetic Field in a General Direction
      3.3. Neutrino Oscillations
      3.4. Time-Dependent Hamiltonians
      3.4.1. Magnetic Resonance
      3.4.2. Light-Matter Interactions
      Summary
      Problems
      Resources
      Activities
      Further Reading
      4. Quantum Spookiness
      4.1. Einstein-Podolsky-Rosen Paradox
      4.2. Schrodinger Cat Paradox
      Problems
      Resources
      Further Reading
      5. Quantized Energies: Particle in a Box
      5.1. Spectroscopy
      5.2. Energy Eigenvalue Equation
      5.3. Wave Function
      5.4. Infinite Square Well
      5.5. Finite Square Well
      5.6. Compare and Contrast
      5.6.1. Wave Function Curvature
      5.6.2. Nodes
      5.6.3. Barrier Penetration
      5.6.4. Inversion Symmetry and Parity
      5.6.5. Orthonormality
      5.6.6. Completeness
      5.7. Superposition States and Time Dependence
      5.8. Modern Application: Quantum Wells and Dots
      5.9. Asymmetric Square Well: Sneak Peek at Perturbations
      5.10. Fitting Energy Eigenstates by Eye or by Computer
      5.10.1. Qualitative (Eyeball) Solutions
      5.10.2. Numerical Solutions
      5.10.3. General Potential Wells
      Summary
      Problems
      Resources
      Activities
      Further Reading
      6. Unbound States
      6.1. Free Particle Eigenstates
      6.1.1. Energy Eigenstates
      6.1.2. Momentum Eigenstates
      6.2. Wave Packets
      6.2.1. Discrete Superposition
      6.2.2. Continuous Superposition
      6.3. Uncertainty Principle
      6.3.1. Energy Estimation
      6.4. Unbound States and Scattering
      6.5. Tunneling Through Barriers
      6.6. Atom Interferometry
      Summary
      Problems
      Resources
      Activities
      Further Reading
      7. Angular Momentum
      7.1. Separating Center-of-Mass and Relative Motion
      7.2. Energy Eigenvalue Equation in Spherical Coordinates
      7.3. Angular Momentum
      7.3.1. Classical Angular Momentum
      7.3.2. Quantum Mechanical Angular Momentum
      7.4. Separation of Variables: Spherical Coordinates
      7.5. Motion of a Particle on a Ring
      7.5.1. Azimuthal Solution
      7.5.2. Quantum Measurements on a Particle Confined to a Ring
      7.5.3. Superposition States
      7.6. Motion on a Sphere
      7.6.1. Series Solution of Legendre's Equation
      7.6.2. Associated Legendre Functions
      7.6.3. Energy Eigenvalues of a Rigid Rotor
      7.6.4. Spherical Harmonics
      7.6.5. Visualization of Spherical Harmonics
      Summary
      Problems
      Resources
      Activities
      8. Hydrogen Atom
      8.1. Radial Eigenvalue Equation
      8.2. Solving the Radial Equation
      8.2.1. Asymptotic Solutions to the Radial Equation
      8.2.2. Series Solution to the Radial Equation
      8.3. Hydrogen Energies and Spectrum
      8.4. Radial Wave Functions
      8.5. Full Hydrogen Wave Functions
      8.6. Superposition States
      Summary
      Problems
      Resources
      Activities
      Further Reading
      9. Harmonic Oscillator
      9.1. Classical Harmonic Oscillator
      9.2. Quantum Mechanical Harmonic Oscillator
      9.3. Wave Functions
      9.4. Dirac Notation
      9.5. Matrix Representations
      9.6. Momentum Space Wave Function
      9.7. Uncertainty Principle
      9.8. Time Dependence
      9.9. Molecular Vibrations
      Summary
      Problems
      Resources
      Activities
      Further Reading
      10. Perturbation Theory
      10.1. Spin-1/2 Example
      10.2. General Two-Level Example
      10.3. Nondegenerate Perturbation Theory
      10.3.1. First-Order Energy Correction
      10.3.2. First-Order State Vector Correction
      10.4. Second-Order Nondegenerate Perturbation Theory
      10.5. Degenerate Perturbation Theory
      10.6. More Examples
      10.6.1. Harmonic Oscillator
      10.6.2. Stark Effect in Hydrogen
      Summary
      Problems
      11. Hyperfine Structure and the Addition of Angular Momenta
      11.1. Hyperfine Interaction
      11.2. Angular Momentum Review
      11.3. Angular Momentum Ladder Operators
      11.4. Diagonalization of the Hyperfine Perturbation
      11.5. Coupled Basis
      11.6. Addition of Generalized Angular Momenta
      11.7. Angular Momentum in Atoms and Spectroscopic Notation
      Summary
      Problems
      Resources
      Activities
      Further Reading
      12. Perturbation of Hydrogen
      12.1. Hydrogen Energy Levels
      12.2. Fine Structure of Hydrogen
      12.2.1. Relativistic Correction
      12.2.2. Spin-Orbit Coupling
      12.3. Zeeman Effect
      12.3.1. Zeeman Effect without Spin
      12.3.2. Zeeman Effect with Spin
      12.3.2.1. Weak magnetic field
      12.3.2.2. Strong magnetic field
      12.3.2.3. Intermediate magnetic field
      12.3.3. Zeeman Perturbation of the 1s Hyperfine Structure
      Summary
      Problems
      Resources
      Activities
      Further Reading
      13. Identical Particles
      13.1. Two Spin-1/2 Particles
      13.2. Two Identical Particles in One Dimension
      13.2.1. Two-Particle Ground State
      13.2.2. Two-Particle Excited State
      13.2.3. Visualization of States
      13.2.4. Exchange Interaction
      13.2.5. Consequences of the Symmetrization Postulate
      13.3. Interacting Particles
      13.4. Example: The Helium Atom
      13.4.1. Helium Ground State
      13.4.2. Helium Excited States
      13.5. Periodic Table
      13.6. Example: The Hydrogen Molecule
      13.6.1. Hydrogen Molecular Ion H2+
      13.6.2. Hydrogen Molecule H2
      Summary
      Problems
      Resources
      Further Reading
      14. Time-Dependent Perturbation Theory
      14.1. Transition Probability
      14.2. Harmonic Perturbation
      14.3. Electric Dipole Interaction
      14.3.1. Einstein Model: Broadband Excitation
      14.3.2. Laser Excitation
      14.4. Selection Rules
      Summary
      Problems
      Resources
      Further Reading
      15. Periodic Systems
      15.1. Energy Eigenvalues and Eigenstates of a Periodic Chain of Wells
      15.1.1. Two-Well Chain
      15.1.2. N-Well Chain
      15.2. Boundary Conditions and the Allowed Values of k
      15.3. Brillouin Zones
      15.4. Multiple Bands from Multiple Atomic Levels
      15.5. Bloch's Theorem and the Molecular States
      15.6. Molecular Wave Functions
      -a Gallery
      15.7. Density of States
      15.8. Calculation of the Model Parameters
      15.8.1. LCAO Summary
      15.9. Kronig-Penney Model
      15.10. Practical Applications: Metals, Insulators, and Semiconductors
      15.11. Effective Mass
      15.12. Direct and Indirect Band Gaps
      15.13. New Directions
      -Low-Dimensional Carbon
      Summary
      Problems
      Resources
      Activities
      Further Reading
      16. Modern Applications of Quantum Mechanics
      16.1. Manipulating Atoms with Quantum Mechanical Forces
      16.1.1. Magnetic Trapping
      16.1.2. Laser Cooling
      16.2. Quantum Information Processing
      16.2.1. Quantum Bits
      -Qubits
      16.2.2. Quantum Gates
      16.2.3. Quantum Teleportation
      Summary
      Problems
      Resources
      Further Reading.
    Session Timeout
    New Session