New Search Search History

Holdings Information

    Manipulation of nanoscale materials : an introduction to nanoarchitectonics / edited by Katsuhiko Ariga.

    • Title:Manipulation of nanoscale materials : an introduction to nanoarchitectonics / edited by Katsuhiko Ariga.
    •    
    • Other Contributors/Collections:Ariga, Katsuhiko, 1962-
      Royal Society of Chemistry (Great Britain)
    • Published/Created:Cambridge, UK : Royal Society of Chemistry, ©2012.
    • Holdings

       
    • Library of Congress Subjects:Nanostructured materials.
    • Medical Subjects: Nanostructures
      Nanotechnology--methods
    • Description:xiv, 473 pages : illustrations ; 25 cm.
    • Series:RSC nanoscience & nanotechnology.
    • Notes:Includes bibliographical references and index.
    • ISBN:9781849734158 (hardback)
      1849734151 (hardback)
    • Contents:Machine generated contents note: ch. 1 Introduction: Nanoarchitechtonics for Materials Innovation
      Nanoarchitechtonics for Materials Development
      ch. 2 Supramolecular materials nanoarchitechtonics
      2.1. Introduction
      2.2. Molecular-level Complex and Arrangement
      2.3. Self-assembly for Functional Structures
      2.4. Intentional Assembly for Functional Structures
      2.5. Bridging between Molecular and Macro
      2.6. Summary
      Acknowledgements
      References
      ch. 3 Controlled Multiscale Dewetting of Self Organized Block Copolymers
      3.1. Introduction
      3.2. Background
      3.2.1. Fundamentals of Wetting and Dewetting Phenomena
      3.2.2. Stability of Block Copolymer Thin Films
      3.3. Control of Dewetting of Polymer Films
      3.3.1. Overview
      3.3.2. Methods for Controlled Dewetting of Liquid Films
      3.4. Control of Dewetting of Block Copolymer Films
      3.4.1. Overview
      3.4.2. Control of Block Copolymer Self Assembly
      3.4.3. Controlled Dewetting of Block Thin Film by Solvent Evaporation
      3.4.4. Controlled Dewetting of Block Thin Film by Chemically Patterned Substrates
      3.4.5. Controlled Dewetting of Block Thin Film by Topographically Patterned Substrates
      3.5. Control of Wetting of Block Copolymer Films
      3.5.1. Overview
      3.5.2. Controlled Wetting of Block Copolymer Droplets
      3.5.3. Controlled Anisotropic Wetting of Block Copolymer Droplets
      3.6. Concluding remarks
      References
      ch. 4 Nanoarchitectures Based on Clay Materials
      4.1. Introduction
      4.2. Layered Clays as Building Blocks for Nanoarchitectonics
      4.2.1. Pillared Clays (PILCs)
      4.2.2. Porous Clay Heterostructures (PCHs)
      4.2.3. Delaminated Porous Clay Heterostructures (DPCHs): Inorganic-Inorganic Nanocomposites
      4.2.4. Assembling NPs and Layered Clays
      4.3. Bottom-up Heteroarchitectures based on Fibrous and Tubular Clays
      4.3.1. Heterostructures based on Sepiolite and Palygorskita
      4.3.2. Heterostructures based on Halloysite and Imogolite
      4.4. Nanoarchitectonics based on Related Inorganic Solids
      4.5. Concluding Remarks
      Acknowledgements
      References
      ch. 5 Mesoporous Nanoarchtechtonics
      5.1. Introduction: The Nanoarchitectonics and Mesoporous Story
      5.2. Carbon Nanocage and its Function
      5.3. Mesoporous Carbon Nitride and Mesoporous Boron Nitride
      5.4. Layered Hierarchic Structure
      5.5. Summary
      Acknowledgements
      References
      ch. 6 Nanoscale Oxides in Catalysis
      6.1. Introduction
      6.1.1. Overview
      6.1.2. Design and Synthesis of Nanomaterials
      6.2. Wet-Chemical and Low Temperature Routes for the Synthesis of Nanocrystalline Metal Oxides
      6.2.1. Hydrolysis/Chemical Precipitation
      6.2.2. Sol-Gel Synthesis
      6.2.3. Hydro-/Solvo-thermal
      6.2.4. Thermolysis
      6.2.5. Sonochemical
      6.2.6. Electrochemical
      6.2.7. Microwave Synthesis
      6.2.8. Biomimetic Mineralization
      6.3. Catalysis
      6.3.1. Effects of Nanostructuring and Morphology
      6.4. Some Typical Nanostructured Metal Oxides and their Catalytic Applications
      6.4.1. Nanocrystalline Magnesium Oxide (MgO)
      6.4.2. Copper Oxide (CuO)
      6.4.3. Titania (TiO2)
      6.4.4. Zinc oxide
      6.4.5. Iron Oxides (Fe2O3, Fe3O4, Mixed Ferrites)
      6.5. Conclusions
      References
      ch. 7 Nanoarchitechtonics of Photocatalytic Materials
      7.1. Introduction
      7.2. Morphology Control
      7.2.1. One-dimensional Nanostructures
      7.2.2. Facet-controlled Nanostructures
      7.2.3. Hierarchical Composite Nanostructures
      7.3. Nano-assembly
      7.3.1. Electronic Coupling Assembly
      7.3.2. Plasmon-Exciton Coupling Assembly
      7.3.3. Optical Coupling Assembly
      7.4. Conclusion
      Acknowledgements
      References
      Materials Nanoarchitechtonics for Bio-Conjugates and Bio-Applications
      ch. 8 Design, Synthesis and Application of Bio-conjugate Nanostructures
      8.1. Introduction
      8.2. Saccharides
      8.2.1. Monosaccharides
      8.2.2. Polysaccharides
      8.3. Phospholipids
      8.3.1. Lipid
      8.3.2. PEG-Lipid
      8.3.3. Calcium Phosphate-Lipid
      8.4. Proteins
      8.4.1. Polymer-Protein
      8.4.2. Gold-Protein
      8.4.3. Quantum Dot-Protein
      8.4.4. Iron Oxide-Protein
      8.4.5. Carbon-Protein
      8.5. Nucleic Acids
      8.5.1. DNA
      8.5.2. Metal-DNA
      8.5.3. Graphene-DNA
      8.6. Extension
      8.7. Conclusions
      Acknowledgements
      References
      ch. 9 Architectonics of Active Sites: Life Processes at Nanodimensions
      9.1. Enzymes, Active Sites and Vital Biological Reactions
      9.2. Influence of the Architectonics of Active Sites on Enzymatic Reactions
      9.3. Nanodimension of Active site, Confinement and Chiral Discrimination
      9.4. Example of a Life Process in a Nanospace: Aminoacylation Reaction in the Active Site of Aminoacyl tRNA Synthetase (aaRS)
      9.4.1. Architectonics of the Active Site of aaRS
      9.4.2. Influence of Active Site of aaRS on Aminoacylation Reaction
      9.5. Future Prospects
      Acknowledgements
      References
      ch. 10 Nanotechnology in Drug Delivery Systems
      10.1. Introduction
      10.2. Nanocrystals
      10.3. Surfactant/Polymer Micelles
      10.4. Emulsions and Microemulsions
      10.5. Liposomes
      10.6. Polymer Nanogels
      10.7. Molecular Conjugates
      10.8. Dendrimers
      10.9. Carbon Nanomaterials
      10.10. Inorganic Nanomaterials
      10.11. Inhalable particles
      10.12. Summary
      References
      ch. 11 Separation of Medically Useful Radionuclides: Role of Nano-sorbents
      11.1. Radionuclides for Use in Nuclear Medicine
      11.2. Classifications of Radionuclides Based on Their Application: Diagnostic and Therapeutic
      11.2.1. Diagnostic Radionuclides
      11.2.2. Therapeutic Radionuclides
      11.3. Production of Radioisotopes for Nuclear Medicine Applications
      11.3.1. Cyclotron-produced Radioisotopes
      11.3.2. Reactor-produced Radionuclides
      11.3.3. Generator-produced Radionuclides
      11.4. Concept of the Radionuclide Generator and the Historical Perspective of its Development
      11.5. Mathematical Equations of Radioactive Decay and Growth in Radionuclide Generators
      11.6. Available Options for the Preparation of Radionuclide Generators
      11.6.1. Column Chromatography
      11.6.2. Solvent Extraction
      11.7. Essential Essential Components of a Column Chromatographic Radionuclide Generator
      11.8. Sorbent: The `Heart' of Column Chromatographic Radionuclide Generator Systems
      11.9. Nanomaterials as New Generation Sorbents for the Preparation of Radionuclide Generators
      11.10. Procedures Involved in Evaluation of a Sorbent Material to Determine its Suitability for the Preparation of Radionuclidic Generators
      11.11. Quality Control of the Generator Produced Radioisotopes
      11.12. Shelf-life of a Radionuclide Generator
      11.13. Use of Nanomaterial-based Sorbents for the Preparation of 99Mo/99Tc and 188W/188Re Generators
      11.13.1. Current Status and Future Perspectives of 99Mo/99mTc and 188W/l88Re Generators
      11.13.2. Polymer Embedded Nanocrystalline Titania for the Preparation of 99Mo/99mTc and 188W/188Re Generators
      11.13.3. Nanocrystalline Zirconia as Sorbent for the Preparation of 99Mo/99mTc and 188W/188Re Generators
      11.14. Conclusions
      11.15. Terminology used in this chapter
      References
      ch. 12 Sensing of Biomolecular Charges at Designer Nanointerfaces
      12.1. Introduction
      12.2. Label-free Biosensing with Semiconductor Devices
      12.2.1. FET Designer Nanointerfaces
      12.2.2. Nucleic Acids Sensing
      12.2.3. Protein sensing
      12.3. Manipulation of Charges for Sensitive Biosensing
      12.3.1. DNA Binders and Intercalators
      12.3.2. Site-selective Charge Conversion of Proteins
      12.4. Summary
      Acknowledgements
      References
      ch. 13 Nanostructured materials for biosensor applications: comparative review of preparation methods
      13.1. Introduction
      13.2. Nanostructures Manufactured Using Plasmonic Colloidal Nanoparticles
      13.2.1. Utilization of Noble Metal Nanostructures in Plasmonic Biosensors
      13.2.2. Preparation of Colloidal Plasmonic Nanostructures
      13.2.3. Core-Shell Nanoparticles
      13.2.4. Surface Nano-patterning of Random-fashion Nanostructures Using Colloidal Au
      13.2.5. Surface Nano-patterning of Periodic Ordered Nanostructures Using Colloidal Au
      13.3. Lithography-free Methods
      13.3.1. Oblique Angle Deposition Method
      13.3.2. Synthesis of Hybrid Nanostructures of Gold Nanoparticles and Carbon Nanotubes
      13.3.3. Anodic Porous Alumina Membranes
      13.4. Lithographic Methods
      13.4.1. Scanning Beam Lithographies
      13.4.2. Colloidal Lithographies
      13.4.3. Nanoimprint Lithography
      References
      Materials Nanoarchitechtonics for Advanced Devices
      ch. 14 Nanostructure Manipulation in Organic Solar Cells
      14.1. Introduction
      14.2. Nanostructure Manipulation In Conjugated Polymer-Fullerene Organic Solar Cells
      14.2.1. During Solution Preparation and Film Formation
      14.2.2. Post-Film Formation Treatment
      14.3. Conclusion
      References
      ch. 15 Substrate alignment by surface probe lithography
      15.1. Introduction
      15.2. Calculation Using Single Molecules or Atoms
      15.2.1. Quantum Qubits
      15.2.2. Single Molecule Quantum Logic
      15.3. Anchoring Molecules to Substrates
      15.3.1. Gold
      15.3.2. Oxides
      15.3.3. Silicon
      15.4. Surface Patterning
      15.4.1. Scanning Tunneling Microscope
      15.4.2. AFM
      15.4.3. Vacuum Deposited Molecular Arrays
      15.5. Scale Registration
      15.5.1. Direct Patterning
      Contents note continued: 15.5.2. Self-assembly
      15.5.3. Polymerization
      15.5.4. Alignment to Prefabricated Electrodes
      15.6. Concluding Remarks
      References
      ch. 16 Nanomechanical Sensors and Membrane-type Surface Stress Sensor (MSS) for Medical, Security and Environmental Applications
      16.1. Introduction
      16.1.1. Demands for New Sensors
      16.1.2. Introduction to Nanomechanical Sensors
      16.2. Cantilever Sensors
      16.2.1. Brief History of Cantilever Sensors
      16.2.2. Operation Modes of Cantilever Sensors
      16.2.3. Surface Functionalization
      16.2.4. Read-out Methods
      16.3. Membrane-type Surface Stress Sensor (MSS)
      16.3.1. Strategy for the Improvement in Sensitivity; Towards Membrane-type Surface Stress Sensor (MSS)
      16.3.2. Performance of MSS
      16.4. Summary and Future Prospects
      Acknowledgements
      References.
    Session Timeout
    New Session