New Search Search History

Holdings Information

    Shigley's mechanical engineering design.

    • Title:Shigley's mechanical engineering design.
    •    
    • Variant Title:Mechanical engineering design
    • Author/Creator:Budynas, Richard G. (Richard Gordon)
    • Other Contributors/Collections:Nisbett, J. Keith.
      Shigley, Joseph Edward. Mechanical engineering design.
    • Published/Created:New York, NY : McGraw-Hill, [2015]
      ©2015
    • Holdings

       
    • Library of Congress Subjects:Machine design.
    • Edition:Tenth edition / Richard G. Budynas, professor emeritus, Kate Gleason College of Engineering, Rochester Institute of Technology, J. Keith Nisbett, associate professor of mechanical engineering, Missouri University of Science and Technology.
    • Description:xxi, 1082 pages : illustrations ; 27 cm
    • Series:McGraw-Hill series in mechanical engineering.
    • Notes:Includes index.
    • ISBN:9780073398204 (alk. paper)
      0073398209 (alk. paper)
    • Contents:Machine generated contents note: 1. Introduction to Mechanical Engineering Design
      1-1. Design
      1-2. Mechanical Engineering Design
      1-3. Phases and Interactions of the Design Process
      1-4. Design Tools and Resources
      1-5. Design Engineer's Professional Responsibilities
      1-6. Standards and Codes
      1-7. Economics
      1-8. Safety and Product Liability
      1-9. Stress and Strength
      1-10. Uncertainty
      1-11. Design Factor and Factor of Safety
      1-12. Reliability and Probability of Failure
      1-13. Relating the Design Factor to Reliability
      1-14. Dimensions and Tolerances
      1-15. Units
      1-16. Calculations and Significant Figures
      1-17. Design Topic Interdependencies
      1-18. Power Transmission Case Study Specifications
      Problems
      2. Materials
      2-1. Material Strength and Stiffness
      2-2. Statistical Significance of Material Properties
      2-3. Strength and Cold Work
      2-4. Hardness
      2-5. Impact Properties
      2-6. Temperature Effects
      2-7. Numbering Systems
      2-8. Sand Casting
      2-9. Shell Molding
      2-10. Investment Casting
      2-11. Powder-Metallurgy Process
      2-12. Hot-Working Processes
      2-13. Cold-Working Processes
      2-14. Heat Treatment of Steel
      2-15. Alloy Steels
      2-16. Corrosion-Resistant Steels
      2-17. Casting Materials
      2-18. Nonferrous Metals
      2-19. Plastics
      2-20. Composite Materials
      2-21. Materials Selection
      Problems
      3. Load and Stress Analysis
      3-1. Equilibrium and Free-Body Diagrams
      3-2. Shear Force and Bending Moments in Beams
      3-3. Singularity Functions
      3-4. Stress
      3-5. Cartesian Stress Components
      3-6. Mohr's Circle for Plane Stress
      3-7. General Three-Dimensional Stress
      3-8. Elastic Strain
      3-9. Uniformly Distributed Stresses
      3-10. Normal Stresses for Beams in Bending
      3-11. Shear Stresses for Beams in Bending
      3-12. Torsion
      3-13. Stress Concentration
      3-14. Stresses in Pressurized Cylinders
      3-15. Stresses in Rotating Rings
      3-16. Press and Shrink Fits
      3-17. Temperature Effects
      3-18. Curved Beams in Bending
      3-19. Contact Stresses
      3-20. Summary
      Problems
      4. Deflection and Stiffness
      4-1. Spring Rates
      4-2. Tension, Compression, and Torsion
      4-3. Deflection Due to Bending
      4-4. Beam Deflection Methods
      4-5. Beam Deflections by Superposition
      4-6. Beam Deflections by Singularity Functions
      4-7. Strain Energy
      4-8. Castigliano's Theorem
      4-9. Deflection of Curved Members
      4-10. Statically Indeterminate Problems
      4-11. Compression Members[
      ]General
      4-12. Long Columns with Central Loading
      4-13. Intermediate-Length Columns with Central Loading
      4-14. Columns with Eccentric Loading
      4-15. Struts or Short Compression Members
      4-16. Elastic Stability
      4-17. Shock and Impact
      Problems
      5. Failures Resulting from Static Loading
      5-1. Static Strength
      5-2. Stress Concentration
      5-3. Failure Theories
      5-4. Maximum-Shear-Stress Theory for Ductile Materials
      5-5. Distortion-Energy Theory for Ductile Materials
      5-6. Coulomb-Mohr Theory for Ductile Materials
      5-7. Failure of Ductile Materials Summary
      5-8. Maximum-Normal-Stress Theory for Brittle Materials
      5-9. Modifications of the Mohr Theory for Brittle Materials
      5-10. Failure of Brittle Materials Summary
      5-11. Selection of Failure Criteria
      5-12. Introduction to Fracture Mechanics
      5-13. Important Design Equations
      Problems
      6. Fatigue Failure Resulting from Variable Loading
      6-1. Introduction to Fatigue in Metals
      6-2. Approach to Fatigue Failure in Analysis and Design
      6-3. Fatigue-Life Methods
      6-4. Stress-Life Method
      6-5. Strain-Life Method
      6-6. Linear-Elastic Fracture Mechanics Method
      6-7. Endurance Limit
      6-8. Fatigue Strength
      6-9. Endurance Limit Modifying Factors
      6-10. Stress Concentration and Notch Sensitivity
      6-11. Characterizing Fluctuating Stresses
      6-12. Fatigue Failure Criteria for Fluctuating Stress
      6-13. Torsional Fatigue Strength under Fluctuating Stresses
      6-14. Combinations of Loading Modes
      6-15. Varying, Fluctuating Stresses; Cumulative Fatigue Damage
      6-16. Surface Fatigue Strength
      6-17. Road Maps and Important Design Equations for the Stress-Life Method
      Problems
      7. Shafts and Shaft Components
      7-1. Introduction
      7-2. Shaft Materials
      7-3. Shaft Layout
      7-4. Shaft Design for Stress
      7-5. Deflection Considerations
      7-6. Critical Speeds for Shafts
      7-7. Miscellaneous Shaft Components
      7-8. Limits and Fits
      Problems
      8. Screws, Fasteners, and the Design of Nonpermanent Joints
      8-1. Thread Standards and Definitions
      8-2. Mechanics of Power Screws
      8-3. Threaded Fasteners
      8-4. Joints[
      ]Fastener Stiffness
      8-5. Joints[
      ]Member Stiffness
      8-6. Bolt Strength
      8-7. Tension Joints[
      ]The External Load
      8-8. Relating Bolt Torque to Bolt Tension
      8-9. Statically Loaded Tension Joint with Preload
      8-10. Gasketed Joints
      8-11. Fatigue Loading of Tension Joints
      8-12. Bolted and Riveted Joints Loaded in Shear
      Problems
      9. Welding, Bonding, and the Design of Permanent Joints
      9-1. Welding Symbols
      9-2. Butt and Fillet Welds
      9-3. Stresses in Welded Joints in Torsion
      9-4. Stresses in Welded Joints in Bending
      9-5. Strength of Welded Joints
      9-6. Static Loading
      9-7. Fatigue Loading
      9-8. Resistance Welding
      9-9. Adhesive Bonding
      Problems
      10. Mechanical Springs
      10-1. Stresses in Helical Springs
      10-2. Curvature Effect
      10-3. Deflection of Helical Springs
      10-4. Compression Springs
      10-5. Stability
      10-6. Spring Materials
      10-7. Helical Compression Spring Design for Static Service
      10-8. Critical Frequency of Helical Springs
      10-9. Fatigue Loading of Helical Compression Springs
      10-10. Helical Compression Spring Design for Fatigue Loading
      10-11. Extension Springs
      10-12. Helical Coil Torsion Springs
      10-13. Belleville Springs
      10-14. Miscellaneous Springs
      10-15. Summary
      Problems
      11. Rolling-Contact Bearings
      11-1. Bearing Types
      11-2. Bearing Life
      11-3. Bearing Load Life at Rated Reliability
      11-4. Reliability versus Life[
      ]The Weibull Distribution
      11-5. Relating Load, Life, and Reliability
      11-6. Combined Radial and Thrust Loading
      11-7. Variable Loading
      11-8. Selection of Ball and Cylindrical Roller Bearings
      11-9. Selection of Tapered Roller Bearings
      11-10. Design Assessment for Selected Rolling- Contact Bearings
      11-11. Lubrication
      11-12. Mounting and Enclosure
      Problems
      12. Lubrication and Journal Bearings
      12-1. Types of Lubrication
      12-2. Viscosity
      12-3. Petroff's Equation
      12-4. Stable Lubrication
      12-5. Thick-Film Lubrication
      12-6. Hydrodynamic Theory
      12-7. Design Considerations
      12-8. Relations of the Variables
      12-9. Steady-State Conditions in Self-Contained Bearings
      12-10. Clearance
      12-11. Pressure-Fed Bearings
      12-12. Loads and Materials
      12-13. Bearing Types
      12-14. Thrust Bearings
      12-15. Boundary-Lubricated Bearings
      Problems
      13. Gears[
      ]General
      13-1. Types of Gears
      13-2. Nomenclature
      13-3. Conjugate Action
      13-4. Involute Properties
      13-5. Fundamentals
      13-6. Contact Ratio
      13-7. Interference
      13-8. Forming of Gear Teeth
      13-9. Straight Bevel Gears
      13-10. Parallel Helical Gears
      13-11. Worm Gears
      13-12. Tooth Systems
      13-13. Gear Trains
      13-14. Force Analysis[
      ]Spur Gearing
      13-15. Force Analysis[
      ]Bevel Gearing
      13-16. Force Analysis[
      ]Helical Gearing
      13-17. Force Analysis[
      ]Worm Gearing
      Problems
      14. Spur and Helical Gears
      14-1. Lewis Bending Equation
      14-2. Surface Durability
      14-3. AGMA Stress Equations
      14-4. AGMA Strength Equations
      14-5. Geometry Factors I and J (ZI and YJ)
      14-6. Elastic Coefficient Cp (ZE)
      14-7. Dynamic Factor Ku
      14-8. Overload Factor Ko
      14-9. Surface Condition Factor Cf (ZR)
      14-10. Size Factor Ks
      14-11. Load-Distribution Factor Km (KH)
      14-12. Hardness-Ratio Factor CH (ZW)
      14-13. Stress-Cycle Factors YN and ZN
      14-14. Reliability Factor KR (YZ)
      14-15. Temperature Factor KT (Yθ)
      14-16. Rim-Thickness Factor KB
      14-17. Safety Factors SF and SH
      14.18. Analysis
      14-19. Design of a Gear Mesh
      Problems
      15. Bevel and Worm Gears
      15-1. Bevel Gearing[
      ]General
      15-2. Bevel-Gear Stresses and Strengths
      15-3. AGMA Equation Factors
      15-4. Straight-Bevel Gear Analysis
      15-5. Design of a Straight-Bevel Gear Mesh
      15-6. Worm Gearing[
      ]AGMA Equation
      15-7. Worm-Gear Analysis
      15-8. Designing a Worm-Gear Mesh
      15-9. Buckingham Wear Load
      Problems
      16. Clutches, Brakes, Couplings, and Flywheels
      16-1. Static Analysis of Clutches and Brakes
      16-2. Internal Expanding Rim Clutches and Brakes
      16-3. External Contracting Rim Clutches and Brakes
      16-4. Band-Type Clutches and Brakes
      16-5. Frictional-Contact Axial Clutches
      16-6. Disk Brakes
      16-7. Cone Clutches and Brakes
      16-8. Energy Considerations
      16-9. Temperature Rise
      16-10. Friction Materials
      16-11. Miscellaneous Clutches and Couplings
      16-12. Flywheels
      Contents note continued: Problems
      17. Flexible Mechanical Elements
      17-1. Belts
      17-2. Flat- and Round-Belt Drives
      17-3. V Belts
      17-4. Timing Belts
      17-5. Roller Chain
      17-6. Wire Rope
      17-7. Flexible Shafts
      Problems
      18. Power Transmission Case Study
      18-1. Design Sequence for Power Transmission
      18-2. Power and Torque Requirements
      18-3. Gear Specification
      18-4. Shaft Layout
      18-5. Force Analysis
      18-6. Shaft Material Selection
      18-7. Shaft Design for Stress
      18-8. Shaft Design for Deflection
      18-9. Bearing Selection
      18-10. Key and Retaining Ring Selection
      18-11. Final Analysis
      Problems
      19. Finite-Element Analysis
      19-1. Finite-Element Method
      19-2. Element Geometries
      19-3. Finite-Element Solution Process
      19-4. Mesh Generation
      19-5. Load Application
      19-6. Boundary Conditions
      19-7. Modeling Techniques
      19-8. Thermal Stresses
      19-9. Critical Buckling Load
      19-10. Vibration Analysis
      19-11. Summary
      Problems
      20. Geometric Dimensioning and Tolerancing
      20-1. Dimensioning and Tolerancing Systems
      20-2. Definition of Geometric Dimensioning and Tolerancing
      20-3. Datums
      20-4. Controlling Geometric Tolerances
      20-5. Geometric Characteristic Definitions
      20-6. Material Condition Modifiers
      20-7. Practical Implementation
      20-8. GD&T in CAD Models
      20-9. Glossary of GD&T Terms
      Problems
      A. Useful Tables
      B. Answers to Selected Problems.
    Session Timeout
    New Session