New Search Search History

Holdings Information

    Biomimetic nanoceramics in clinical use
    Nanoceramics in clinical use : from materials to applications / María Vallet-Regí, Daniel A. Arcos Navarrete.

    • Title:[Biomimetic nanoceramics in clinical use]
      Nanoceramics in clinical use : from materials to applications / María Vallet-Regí, Daniel A. Arcos Navarrete.
    •    
    • Author/Creator:Vallet-Regí, María author.
    • Other Contributors/Collections:Arcos Navarrete, Daniel, 1971- author.
      Royal Society of Chemistry (Great Britain), issuing body.
    • Published/Created:Cambridge : Royal Society of Chemistry, [2016]
      ©2016
    • Holdings

       
    • Library of Congress Subjects:Ceramics in medicine.
      Nanostructured materials--Therapeutic use.
      Nanomedicine.
      Biomimetics.
    • Medical Subjects: Biocompatible Materials.
      Biomimetic Materials.
      Nanostructures.
      Bone Substitutes.
      Nanomedicine--methods.
      Tissue Engineering--methods.
    • Edition:2nd edition.
    • Description:xv, 331 pages : illustrations (some color) ; 24 cm
    • Series:RSC nanoscience & nanotechnology ; 39.
    • Notes:Preceded by Biomimetic nanoceramics in clinical use / María Vallet-Regi and Daniel Arcos. c2008.
      Includes bibliographical references and index.
    • ISBN:9781782621041 hardback
      1782621040
      9781782622550 (PDF)
    • Contents:Machine generated contents note: 1.1. Hard-Tissue Biomineralization: How Nature Works
      1.1.1. Bone Formation
      1.1.2. Discussion on Biomineralization
      1.1.3. Biomineralization Processes
      1.1.4. Biominerals
      1.1.5. Inorganic Components: Composition and Most-Frequent Structures
      1.1.6. Organic Components: Vesicles and Polymer Matrices
      1.2. Alternative Ways to Obtain Nanosized Calcium-Deficient Carbonate-Hydroxy-Apatites
      1.2.1. Synthetic Route
      1.2.2. Biomimetic Process
      References
      2.1. Introduction
      2.1.1. General Remarks on the Reactivity of Solids
      2.1.2. Objectives and Preparation Strategies
      2.2. Synthesis Methods
      2.2.1. Synthesis of Apatites by the Ceramic Method
      2.2.2. Synthesis of Apatites by Wet-Route Methods
      2.2.3. Synthesis of Apatites by Aerosol Processes
      2.2.4. Other Methods Based on Precipitation from Aqueous Solutions
      2.2.5. Apatites in the Absence of Gravity
      2.2.6. Carbonate Apatites
      2.2.7. Silica as a Component in Apatite Precursor Ceramic Materials
      2.2.8. Apatite Coatings
      2.2.9. Precursors to Obtain Apatites
      2.2.10. Additional Synthesis Methods
      2.2.11. Sintered Apatites
      2.2.12. Bioinspired Synthesis of Nanoapatites
      References
      3.1. Introduction
      3.1.1. Biomimetic Nanoapatites and Bioactive Ceramics
      3.1.2. Biomimetic Nanoapatites on Nonceramic Biomaterials; Two examples: Polyactive® and Titanium Alloys
      3.1.3. Significance of Biomimetic Nanoapatite Growth on Bioceramic Implants
      3.2. Simulated Physiological Solutions for Biomimetic Procedures
      3.3. Biomimetic Crystallization Methods
      3.4. Calcium Phosphate Bioceramics
      3.4.1. Bone Tissue Response to Calcium Phosphate Bioceramics
      3.4.2. Reactivity of Calcium Phosphate Bioceramics with the Biological Environment
      3.4.3. Physical-Chemical Events in CaP Bioceramics During the Biomimetic Process
      3.5. Biomimetic Nanoceramics on Hydroxyapatite and Advanced Apatite-Derived Bioceramics
      3.5.1. Hydroxyapatite, Oxyhydroxyapatite and Ca-Deficient Hydroxyapatite
      3.5.2. Silicon-Substituted Apatites
      3.6. Biphasic Calcium Phosphates (BCPs)
      3.6.1. Introduction to BCPs
      3.6.2. Biomimetic Nanoceramics on BCP Biomaterials
      3.7. Biomimetic Nanoceramics on Bioactive Glasses
      3.7.1. Introduction to Bioactive Glasses
      3.7.2. Composition and Structure of Melt-Derived Bioactive Glasses
      3.7.3. Sol-Gel Bioactive Glasses
      3.7.4. Bioactive Process in Si02-Based Glasses
      3.7.5. Biomimetic Nanoapatite Formation on SiO2-Based Bioactive Glasses
      3.7.6. Role of P2O5 In Vitro Bioactivity of Sol-Gel Glasses
      3.7.7. Biomimetism Evaluation on Silica-Based Bioactive Glasses
      3.8. Mesoporous Bioactive Glasses (MBGs)
      3.8.1. Structures and Compositions
      3.8.2. Bioactive Behaviour of MBGs
      3.9. Biomimetism in Organic-Inorganic Hybrid Materials
      3.9.1. Introduction to Organic-Inorganic Hybrid Materials
      3.9.2. Synthesis of Biomimetic Nanoapatites on Class I Hybrid Materials
      3.9.3. Synthesis of Biomimetic Nanoapatites on Class II Hybrid Materials
      3.9.4. Bioactive Star-Gels
      References
      4.1. Introduction
      4.2. Nanoceramics for Bone-Tissue Regeneration
      4.2.1. Bone Cell Adhesion on Nanoceramics: The Role of the Proteins on the Specific Cell-Material Attachment
      4.2.2. Bioinspired Nanoapatites: Supramolecular Chemistry as a Tool for Better Bioceramics
      4.3. Nanocomposites for Bone-Grafting Applications
      4.3.1. Nano-HA-Based Composites
      4.3.2. Mechanical Properties of HA-Derived Nanocomposites
      4.3.3. Nanoceramic Filler and Polymer Matrix Anchorage
      4.3.4. Significance of the Nanoparticle Dispersion Homogeneity
      4.3.5. Biocompatibility Behaviour of HA-Derived Nanocomposites
      4.3.6. Nanocomposite-Based Fibres
      4.3.7. Nanocomposite-Based Microspheres
      4.3.8. Nanocomposite Scaffolds for Bone-Tissue Engineering
      4.4. Nanostructured Biomimetic Coatings
      4.4.1. Sol-Gel-Based Nano-HA Coatings
      4.4.2. Nano-HA Coatings Prepared by Biomimetic Deposition
      4.5. Nanoapatites for Diagnosis and Drug/Gene-Delivery Systems
      4.5.1. Biomimetic Nanoapatites as Biological Probes
      4.5.2. Biomimetic Nanoapatites for Drug and Gene Delivery
      4.6. Bioactive Glasses for Drug Delivery
      4.7. Sol-Gel Silica Glasses as Scaffolds for Bone Tissue Engineering
      4.8. Mesoporous Bioactive Glasses for Drug Delivery
      4.8.1. Bioactive Mesoporous Microspheres
      4.9. MBG Scaffolds for Regenerative Bone Therapies
      References
      5.1. What is a Mesoporous Material?
      5.2. Discovery
      5.3. Chemistry
      5.3.1. From Bulk to Mesoporous Nanoparticles
      5.3.2. Expansion in Compositions: Not Only Silica
      5.4. Structural Features
      5.5. Potential Modifications to the Mesostructure
      5.6. Significance in the Clinical Field
      5.7. From Bulk to Nano: Potential Use in Nanomedicine
      References
      6.1. What is Nanomedicine?
      6.1.1. Link Between Biotechnology and Medicine
      6.2. What is a nanocarrier?
      6.3. Ceramic Nanoparticles in Medicine
      6.3.1. Mesoporous Silica Nanoparticles
      6.3.2. Calcium Phosphate Nanoparticles
      6.3.3. Carbon Allotropes
      6.3.4. Iron Oxide Nanoparticles
      6.4. Administration
      6.5. Design of Nanocarriers
      6.5.1. Biodistribution and Excretion/Clearance Pathways
      6.6. Passive Targeting
      6.6.1. Enhanced Permeation and Retention Effect
      6.6.2. Tumor Microenvironment
      6.7. Active Targeting
      6.7.1. Angiogenesis-Associated Active Targeting
      6.8. Preparation of Nanocarriers
      6.8.1. Synthesis
      6.8.2. Loading
      6.8.3. Stimulus-Response Systems
      6.8.4. Different Kinds of Stimuli
      6.9. Other Applications of Nanoparticles in Nanomedicine: Imaging and Theranostic Applications
      6.9.1. Mesoporous Silica Nanoparticles
      6.9.2. Carbon Allotropes
      6.9.3. Iron Oxide Nanoparticles
      6.10. Some Thoughts on Toxicity
      References
      7.1. Introduction
      7.2. Structure and Magnetic Properties of Iron Oxide Nanoparticles
      7.2.1. Magnetic Properties of Iron Oxide Nanoparticle Colloids
      7.3. Synthesis of Magnetic Iron Oxide Nanoparticles
      7.3.1. Co-Precipitation Synthesis
      7.3.2. Microemulsion Synthesis
      7.3.3. Solidification of Solid Solutions
      7.3.4. Aerosol-Assisted Methods
      7.4. Surface Functionalization of SPIONs
      7.4.1. Stabilization of Iron Oxide Nanoparticles
      7.4.2. Active Targeting Agents
      7.5. Biomedical Applications of Magnetic Nanoparticles
      7.5.1. Magnetic Nanoparticles in MRI
      7.5.2. Hyperthermia Treatment of Cancer
      7.5.3. Magnetofection
      7.5.4. Drug Delivery
      References.
    Session Timeout
    New Session