New Search Search History

Holdings Information

    Hydrologic analysis and design / Richard H. McCuen.

    • Title:Hydrologic analysis and design / Richard H. McCuen.
    •    
    • Author/Creator:McCuen, Richard H., 1941- author.
    • Published/Created:Hoboken, NJ : Pearson Higher Education, Inc., [2017]
      ©2017
    • Holdings

       
    • Library of Congress Subjects:Hydraulic engineering.
      Hydrology.
    • Edition:Fourth edition.
    • Description:xix, 790 pages : illustrations ; 25 cm
    • Notes:Includes bibliographical references and index.
    • ISBN:9780134313122 hardcover
      0134313127 hardcover
    • Contents:Machine generated contents note: 1.0. Notation
      1.1. Hydrology: The Study of Water
      1.2. Hydrologic Cycle
      1.3. Hydrologic Designs
      1.4. Analysis versus Synthesis
      1.4.1. Water Budget Analysis and Synthesis
      1.4.2. Conceptual Representation
      1.5. Hydrologic Budget
      1.6. Introduction to Professional Ethics
      1.6.1. Case Studies: Ethical Dilemmas in a Professional Setting
      1.6.2. Case Studies: A Question of Values
      1.7. Dimensions of Professionalism
      1.8. Human Values: A Definition
      1.9. Values in Hydrology
      1.10. Solving Value Dilemmas
      1.11. Rationalization
      1.12. Concluding Thoughts
      Problems
      Review Questions
      2.0. Notation
      2.1. Introduction
      2.2. Rainfall Characteristics
      2.2.1. Volume-Duration-Frequency
      2.2.2. Rainfall Maps
      2.2.3. Intensity-Duration-Frequency
      2.2.4. Mathematical Representation of IDF Curves
      2.2.5. Depth-Area Adjustments
      2.2.6. Precipitation Extremes and Means
      2.2.7. Storm-Event Isohyetal Patterns
      2.3. Estimating Missing Rainfall Data
      2.3.1. Station-Average Method
      2.3.2. Normal-Ratio Method
      2.3.3. Isohyetal Method
      2.3.4. Quadrant Method
      2.4. Gauge Consistency
      2.5. Average Areal Rainfall
      2.5.1. Station-Average Method
      2.5.2. Thiessen Polygon Method
      2.5.3. Isohyetal Method
      2.5.4. Average Rainfall for Subwatersheds
      2.6. Development of a Design Storm
      2.6.1. Constant-Intensity Design Storm
      2.6.2. Natural Resources Conservation Service 24-Hour Storm Distributions
      2.6.3. Comparison of Design Storms
      2.7. Chapter Summary
      2.7.1. Analysis and Synthesis
      Problems
      Review Questions
      Discussion Question
      3.0. Notation
      3.1. Introduction
      3.1.1. Analysis versus Synthesis
      3.1.2. Uncertainty of Hydrologic Variables
      3.2. Watershed: Definition and Delineation
      3.3. Watershed Geomorphology
      3.3.1. Drainage Area
      3.3.2. Watershed Length
      3.3.3. Watershed Slope
      3.3.4. Hypsometric Curve
      3.3.5. Watershed Shape
      3.3.6. Land Cover and Land Use
      3.4. Channel Geomorphology
      3.4.1. Channel Length
      3.4.2. Channel Slope
      3.4.3. Drainage Density
      3.4.4. Channel Cross Sections
      3.5. Horton's Laws
      3.5.1. Law of Stream Numbers
      3.5.2. Law of Stream Lengths
      3.5.3. Law of Stream Areas
      3.5.4. Law of Stream Slopes
      3.6. Runoff Curve Numbers
      3.6.1. Soil-Group Classification
      3.6.2. Cover-Complex Classification
      3.6.3. Hydrologic Condition
      3.6.4. Natural Resources Conservation Service Soil-Survey Reports
      3.6.5. Curve Number Tables
      3.6.6. Antecedent Soil-Moisture Condition
      3.6.7. Weighted Curve Numbers
      3.6.8. Estimation of CN Values for Urban Land Uses
      3.6.9. Effect of an Unconnected Impervious Area on Curve Numbers
      3.6.10. Effect of Storm Duration on CNs
      3.7. Velocity Estimation
      3.7.1. Chezy Equation
      3.7.2. Manning's Equation
      3.7.3. Surface Roughness
      3.7.4. Channel Roughness
      3.8. Travel Time Estimation
      3.8.1. Definitions
      3.8.2. Classifying Time Parameters
      3.8.3. Velocity Method
      3.8.4. Sheet-Flow Travel Times
      3.8.5. Travel Times for Concentrated Flow
      3.8.6. Slope Method
      3.8.7. Effect of Return Period
      3.8.8. Natural Resources Conservation Service (NRCS) Lag Formula
      3.8.9. General Principles for Estimating the Time of Concentration
      Problems
      Review Questions
      Discussion Question
      4.0. Notation
      4.1. Introduction
      4.1.1. Hydrographs and Discharge
      4.1.2. Rainfall-Runoff Association
      4.1.3. Runoff Frequency
      4.2. Frequency Analysis and Synthesis
      4.2.1. Population versus Sample
      4.2.2. Analysis versus Synthesis
      4.2.3. Probability Paper
      4.2.4. Mathematical Model
      4.2.5. Procedure
      4.2.6. Sample Moments
      4.2.7. Plotting-Position Formulas
      4.2.8. Return Period
      4.3. Population Models
      4.3.1. Normal Distribution
      4.3.2. Log-Normal Distribution
      4.3.3. Log-Pearson Type III Distribution
      4.4. Low-Flow Frequency Analysis
      4.5. Adjustments of the Frequency Curve
      4.5.1. Standard Errors of the Moments
      4.5.2. Weighted Skew
      4.5.3. Confidence Intervals on a Frequency Curve
      4.6. Testing a Flood Series for Nonstationarity
      4.6.1. Spearman Test
      4.6.2. Spearman-Conley Test
      4.7. Adjusting a Nonhomogeneous Flood Record
      4.8. Risk Assessment
      4.9. Partial-Duration Series
      4.10. Coincident Frequency Analysis
      4.11. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      Appendix 4.1: Exceedance probability-coefficients
      5.0. Notation
      5.1. Introduction
      5.2. Single-Return-Period Equations
      5.2.1. Analysis
      5.2.2. Synthesis
      5.2.3. United States Geological Survey Urban-Peak-Discharge Formulas
      5.3. Index-Flood Estimation
      5.3.1. Analysis
      5.3.2. Synthesis
      5.4. Moment Estimation
      5.4.1. Analysis
      5.4.2. Synthesis
      5.5. Rational Method
      5.5.1. Procedure
      5.5.2. Assumptions of the Rational Method
      5.5.3. Runoff Coefficients for Nonhomogeneous Areas
      5.5.4. Designs on Subdivided Watersheds
      5.5.5. Effect of Watershed Nonhomogeneity
      5.5.6. Iterative Estimation of Travel Times
      5.6. Natural Resources Conservation Service Rainfall-Runoff Depth Relation
      5.6.1. Conceptual Model
      5.6.2. Runoff-Depth Estimation
      5.6.3. Estimating Runoff Depths for Storms of Short Duration
      5.7. Natural Resources Conservation Service Graphical-Peak-Discharge Method
      5.7.1. la/P Parameter
      5.7.2. Peak-Discharge Computation
      5.7.3. Limitations
      5.8. Slope-Area Method of Discharge Estimation
      5.9. Peak-Discharge Envelope Curves
      5.10. Regionalization of Hydrologic Variables
      5.11. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      6.0. Notation
      6.1. Introduction
      6.2. Design of Roof Drainage
      6.3. Design of Shallow Channels
      6.3.1. Design Procedure
      6.3.2. Effect of Erroneous Inputs
      6.4. Design of Grassed Waterways
      6.5. Design of Vegetated Buffer Strips
      6.6. Weir and Orifice Equations
      6.6.1. Orifice Equation
      6.6.2. Weir Equation
      6.7. Design of Pavement-Drainage Inlets
      6.8. Slotted-Drain Inlet Design
      6.9. Culvert Design
      6.9.1. Unsubmerged Inlet and Outlet
      6.9.2. Submerged Inlet, Unsubmerged Outlet, Partially Full Pipe
      6.9.3. Submerged Inlet and Outlet
      6.10. Stage-Storage-Discharge Relations
      6.10.1. Stage-Storage Relation
      6.10.2. Stage-Discharge Relation
      6.10.3. Stage-Storage-Discharge Relationships for Two-Stage Risers
      6.11. Estimating Detention-Basin Volumes
      6.11.1. Storm Water Management Policy Considerations
      6.11.2. Elements of Storm Water Management Structures
      6.11.3. Analysis versus Synthesis
      6.11.4. Planning versus Design
      6.11.5. Generalized Planning Model
      6.11.6. Loss-of-Natural-Storage Method
      6.11.7. Abt and Grigg Method
      6.11.8. Natural Resources Conservation Service Technical Release 55 Method
      6.12. Sizing of Detention-Basin Outlet Structures
      6.12.1. Procedure for Sizing Single-Stage Risers
      6.12.2. Sizing of Two-Stage Risers
      6.12.3. Sizing of Multiple-Stage Riser Facilities
      6.13. Emergency Spillway Design
      6.14. Design of Constructed Wetlands
      6.14.1. Components of a Wetland
      6.14.2. General Design Considerations
      6.14.3. General Design Constraints
      6.14.4. Inflow Volume Estimation
      6.15. Biogutter Design
      6.16. Infiltration Trenches
      Problems
      Review Questions
      Discussion Question
      7.0. Notation
      7.1. Introduction
      7.1.1. Hydrographs and the Systems Process
      7.1.2. Hydrograph Analysis
      7.1.3. Hydrograph Synthesis
      7.2. Baseflow Separation
      7.2.1. Constant-Discharge Baseflow Separation
      7.2.2. Constant-Slope Baseflow Separation
      7.2.3. Concave Baseflow Separation
      7.2.4. Master-Depletion-Curve Method
      7.2.5. Baseflow and Direct Runoff
      7.3. Estimation of Initial Abstraction
      7.4. Separation of Losses Using Index Methods
      7.4.1. Phi-Index Method
      7.4.2. Constant-Percentage Method
      7.5. Separation of Losses Using Infiltration-Capacity Curves
      7.5.1. Horton's Infiltration-Capacity Curve
      7.5.2. Recovery of Infiltration Capacity
      7.5.3. Infiltration-Capacity Estimation after Incomplete Recovery
      7.5.4. Mass-Infiltration Method
      7.5.5. Analysis and Synthesis
      7.5.6. Green-Ampt Model
      7.6. Unit Hydrograph Concepts
      7.6.1. Definitions
      7.6.2. Convolution
      7.7. Unit Hydrograph Analysis
      7.7.1. Rainfall-Excess Reciprocal Method
      7.8. Unit Hydrograph Adjustments
      7.8.1. S-Hydrograph Method
      7.8.2. Gamma-Distribution Unit Hydrograph
      7.8.3. Averaging Storm-Event Unit Hydrographs
      7.8.4. Dimensionless Unit Hydrographs
      7.9. Synthetic Unit Hydrographs
      7.9.1. Time-Area Unit Hydrographs
      7.9.2. Hydrograph Assumptions of the Rational Method
      7.9.3. Natural Resources Conservation Service Dimensionless Unit Hydrographs
      7.10. Designing with Hydrographs
      7.11. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      8.0. Notation
      8.1. Introduction
      8.1.1. Analysis versus Synthesis: Channel Routing
      8.1.2. Analysis versus Synthesis: Reservoir Routing
      8.2. Development of the Routing Equation
      8.2.1. General Equations for Channel Routing
      8.2.2. Routing Equation for Reservoir Routing
      Contents note continued: 8.3. Convex Routing Method
      8.3.1. Application of the Convex Method
      8.3.2. Estimation of the Routing Coefficient
      8.3.3. Regression Analysis of the Routing Coefficient
      8.4. Muskingum Routing Method
      8.4.1. Estimation of Muskingum Routing Coefficients
      8.4.2. Analysis of Muskingum Coefficients
      8.4.3. Synthesis of Muskingum Coefficients
      8.5. Muskingum-Cunge Method
      8.6. Comparison of Channel Routing Methods
      8.7. Storage-Indication Routing
      8.8. Design Procedure
      8.9. Watershed Planning and Legal Case Studies
      8.10. Chapter Summary
      Problems
      Review Questions
      Discussion Question A
      Discussion Question B
      9.0. Notation
      9.1. Introduction
      9.2. Statistical Water-Yield Modeling
      9.3. Empirical Formulas
      9.4. Concordant-Flow Method
      9.5. Degree-Day Method
      9.5.1. Analysis
      9.5.2. Synthesis
      9.5.3. Adjustment of Temperatures for Altitude
      9.6. Temperature Indices of Snowmelt
      9.7. Energy Balance Analysis
      9.8. Water-Balance Models
      9.9. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      10.0. Notation
      10.1. Introduction
      10.2. Factors Affecting Evaporation
      10.2.1. Temperature
      10.2.2. Humidity and Vapor Pressure
      10.2.3. Radiation
      10.2.4. Wind Speed
      10.3. Energy Budget
      10.4. Water Budget
      10.5. Penman Equation
      10.5.1. Energy Balance of the Penman Model
      10.5.2. Penman Model Simplifications
      10.5.3. Approximations for Model Inputs
      10.6. Mass-Transfer Estimation
      10.7. Pan Evaporation
      10.8. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      11.0. Notation
      11.1. Introduction
      11.2. Concentration and Loads
      11.2.1. Water-Quality Measurements
      11.2.2. Definitions
      11.2.3. Concentration-Flow Relationships
      11.2.4. Frequency Analysis
      11.2.5. Mean Concentration and Load Estimation at Ungauged Locations
      11.2.6. Mean Weighted Load
      11.3. Flow Dilution
      11.4. Empirical Models
      11.4.1. Nationwide Equations for Urban Watersheds
      11.4.2. Estimation of Stream-Nutrient Levels
      11.4.3. Simple Method
      11.5. Materials Balance
      11.5.1. Batch Reactors
      11.5.2. Effect of Temperature
      11.6. Streeter-Phelps Oxygen Sag Curve
      11.7. Routing a Loadograph
      11.8. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      12.0. Notation
      12.1. Introduction
      12.1.1. Analysis versus Synthesis
      12.2. Physical Processes in Erosion and Sedimentation
      12.2.1. Stokes Law
      12.2.2. Settling in Multiple-Particle Flow Fields
      12.3. Channel Stability
      12.3.1. Methods of Channel-Stability Analysis
      12.3.2. Permissible-Velocity Method
      12.3.3. Regime-Theory Method
      12.4. Universal Soil-Loss Equation
      12.5. Erosion in Gullies
      12.6. Suspended-Sediment Transport
      12.7. Bedload Transport
      12.7.1. Empirical Methods of Estimating Bedload
      12.7.2. Equations Based on Flow Velocity
      12.7.3. Equations Based on the Water Discharge
      12.7.4. Equations Based on a Critical Discharge
      12.7.5. Equations Based on Shear Stress
      12.7.6. Comparison of Bedload Equations
      12.8. Tractive-Force Approach to Stable Channel Design
      12.8.1. Development of Tractive-Force Model
      12.8.2. Critical Tractive Force
      12.9. Estimating Sediment Yield
      12.9.1. Flow-Duration, Sediment-Rating-Curve Procedure
      12.9.2. Univariate Analysis of Reservoir Sediment-Accumulation Records
      12.9.3. Multiple Variable Analysis of Reservoir Sediment-Accumulation Records
      12.9.4. Estimation Using Sediment-Delivery Ratios
      12.9.5. Sediment Routing Using Sediment-Delivery Ratios
      12.9.6. Estimating Trap Efficiency
      12.10. Chapter Summary
      Problems
      Review Questions
      Discussion Question
      13.0. Notation
      13.1. Introduction
      13.1.1. Groundwater: A Component of the Hydrologic Cycle
      13.1.2. Ground Water Terminology
      13.2. Soil Characteristics
      13.2.1. Soil Profile
      13.2.2. Soil Texture
      13.2.3. Soil Structure
      13.2.4. Volumetric Characteristics of Soils
      13.2.5. Soil Moisture
      13.2.6. Hydrologic Soil Groups and Soil-Cover Condition
      13.3. Darcy's law
      13.3.1. Hydraulic Conductivity
      13.3.2. Groundwater Velocities
      13.4. Hydraulics of Wells: Steady State
      13.4.1. Unidirectional Flow: Confined Aquifer
      13.4.2. Unidirectional Flow: Unconfined Aquifer
      13.4.3. Radial Flow: Confined Aquifer
      13.4.4. Radial Flow: Unconfined Aquifer
      13.5. Hydraulics of Wells: Unsteady Flow
      13.5.1. Theis Method
      13.5.2. Jacob's Straight-Line Method
      13.6. Groundwater Management
      13.6.1. Safe Yield: Definition
      13.6.2. Determination of Safe Yield
      13.6.3. Zero-Fluctuation Method
      13.6.4. Average-Draft Method
      13.6.5. Simplified Water-Balance Method
      13.7. Chapter Summary
      Problems
      Review Questions
      Discussion Question.
    Session Timeout
    New Session