New Search Search History

Holdings Information

    Non-linear finite element analysis of solids and structures.

    • Title:Non-linear finite element analysis of solids and structures.
    •    
    • Other Contributors/Collections:Borst, René de.
      Crisfield, M. A. Non-linear finite element analysis of solids and structures.
    • Published/Created:Chichester, West Sussex : Wiley, 2012.
    • Holdings

       
    • Library of Congress Subjects:Structural analysis (Engineering)--Data processing.
      Finite element method--Data processing.
    • Edition:2nd ed. / René de Borst ... [et al.].
    • Description:xxiii, 516 pages : illustrations ; 25 cm.
    • Series:Wiley series in computational mechanics.
    • Summary:"The Finite Element Method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems"-- Provided by publisher.
    • Notes:Rev. ed. of: Non-linear finite element analysis of solids and structures / M.A. Crisfield. c1991-c1997. (2 v.)
      Includes bibliographical references and index.
    • ISBN:9780470666449 (hardback)
      0470666447 (hardback)
    • Contents:Machine generated contents note: pt. I BASIC CONCEPTS AND SOLUTION TECHNIQUES
      1. Preliminaries
      1.1. Simple Example of Non-linear Behaviour
      1.2. Review of Concepts from Linear Algebra
      1.3. Vectors and Tensors
      1.4. Stress and Strain Tensors
      1.5. Elasticity
      1.6. PyFEM Finite Element Library
      References
      2. Non-linear Finite Element Analysis
      2.1. Equilibrium and Virtual Work
      2.2. Spatial Discretisation by Finite Elements
      2.3. PyFEM: Shape Function Utilities
      2.4. Incremental-iterative Analysis
      2.5. Load versus Displacement Control
      2.6. PyFEM: A Linear Finite Element Code with Displacement Control
      References
      3. Geometrically Non-linear Analysis
      3.1. Truss Elements
      3.1.1. Total Lagrange Formulation
      3.1.2. Updated Lagrange Formulation
      3.1.3. Corotational Formulation
      3.2. PyFEM: The Shallow Truss Problem
      3.3. Stress and Deformation Measures in Continua
      3.4. Geometrically Non-linear Formulation of Continuum Elements
      3.4.1. Total and Updated Lagrange Formulations
      3.4.2. Corotational Formulation
      3.5. Linear Buckling Analysis
      3.6. PyFEM: A Geometrically Non-linear Continuum Element
      References
      4. Solution Techniques in Quasi-static Analysis
      4.1. Line Searches
      4.2. Path-following or Arc-length Methods
      4.3. PyFEM: Implementation of Riks' Arc-length Solver
      4.4. Stability and Uniqueness in Discretised Systems
      4.4.1. Stability of a Discrete System
      4.4.2. Uniqueness and Bifurcation in a Discrete System
      4.4.3. Branch Switching
      4.5. Load Stepping and Convergence Criteria
      4.6. Quasi-Newton Methods
      References
      5. Solution Techniques for Non-linear Dynamics
      5.1. Semi-discrete Equations
      5.2. Explicit Time Integration
      5.3. PyFEM: Implementation of an Explicit Solver
      5.4. Implicit Time Integration
      5.4.1. Newmark Family
      5.4.2. HHT α-method
      5.4.3. Alternative Implicit Methods for Time Integration
      5.5. Stability and Accuracy in the Presence of Non-linearities
      5.6. Energy-conserving Algorithms
      5.7. Time Step Size Control and Element Technology
      References
      pt. II MATERIAL NON-LINEARITIES
      6. Damage Mechanics
      6.1. Concept of Damage
      6.2. Isotropic Elasticity-based Damage
      6.3. PyFEM: A Plane-strain Damage Model
      6.4. Stability, Ellipticity and Mesh Sensitivity
      6.4.1. Stability and Ellipticity
      6.4.2. Mesh Sensitivity
      6.5. Cohesive-zone Models
      6.6. Element Technology: Embedded Discontinuities
      6.7. Complex Damage Models
      6.7.1. Anisotropic Damage Models
      6.7.2. Microplane Models
      6.8. Crack Models for Concrete and Other Quasi-brittle Materials
      6.8.1. Elasticity-based Smeared Crack Models
      6.8.2. Reinforcement and Tension Stiffening
      6.9. Regularised Damage Models
      6.9.1. Non-local Damage Models
      6.9.2. Gradient Damage Models
      References
      7. Plasticity
      7.1. Simple Slip Model
      7.2. Flow Theory of Plasticity
      7.2.7. Yield Function
      7.2.2. Flow Rule
      7.2.3. Hardening Behaviour
      7.3. Integration of the Stress-strain Relation
      7.4. Tangent Stiffness Operators
      7.5. Multi-surface Plasticity
      7.5.7. Koiter's Generalisation
      7.5.2. Rankine Plasticity for Concrete
      7.5.3. Tresca and Mohr-Coulomb Plasticity
      7.6. Soil Plasticity: Cam-clay Model
      7.7. Coupled Damage-Plasticity Models
      7.8. Element Technology: Volumetric Locking
      References
      8. Time-dependent Material Models
      8.1. Linear Visco-elasticity
      8.7.7. One-dimensional Linear Visco-elasticity
      8.1.2. Three-dimensional Visco-elasticity
      8.1.3. Algorithmic Aspects
      8.2. Creep Models
      8.3. Visco-plasticity
      8.3.1. One-dimensional Visco-plasticity
      8.3.2. Integration of the Rate Equations
      8.3.3. Perzyna Visco-plasticity
      8.3.4. Duvaut-Lions Visco-plasticity
      8.3.5. Consistency Model
      8.3.6. Propagative or Dynamic Instabilities
      References
      pt. III STRUCTURAL ELEMENTS
      9. Beams and Arches
      9.1. Shallow Arch
      9.1.1. Kirchhoff Formulation
      9.1.2. Including Shear Deformation: Timoshenko Beam
      9.2. PyFEM: A Kirchhoff Beam Element
      9.3. Corotational Elements
      9.3.1. Kirchhoff Theory
      9.3.2. Timoshenko Beam Theory
      9.4. Two-dimensional Isoparametric Degenerate Continuum Beam Element
      9.5. Three-dimensional Isoparametric Degenerate Continuum Beam Element
      References
      10. Plates and Shells
      10.1. Shallow-shell Formulations
      10.2. Isoparametric Degenerate Continuum Shell Element
      10.3. Solid-like Shell Elements
      10.4. Shell Plasticity: Ilyushin's Criterion
      References
      pt. IV LARGE STRAINS
      11. Hyperelasticity
      11.1. More Continuum Mechanics
      11.1.1. Momentum Balance and Stress Tensors
      11.1.2. Objective Stress Rates
      11.1.3. Principal Stretches and Invariants
      11.2. Strain Energy Functions
      11.2.1. Incompressibility and Near-incompressibility
      11.2.2. Strain Energy as a Function of Stretch Invariants
      11.2.3. Strain Energy as a Function of Principal Stretches
      11.2.4. Logarithmic Extension of Linear Elasticity: Hencky Model
      11.3. Element Technology
      11.3.1. u I p Formulation
      11.3.2. Enhanced Assumed Strain Elements
      11.3.3. F-bar Approach
      11.3.4. Corotational Approach
      References
      12. Large-strain Elasto-plasticity
      12.1. Eulerian Formulations
      12.2. Multiplicative Elasto-plasticity
      12.3. Multiplicative Elasto-plasticity versus Rate Formulations
      12.4. Integration of the Rate Equations
      12.5. Exponential Return-mapping Algorithms
      References
      pt. V ADVANCED DISCRETISATION CONCEPTS
      13. Interfaces and Discontinuities
      13.1. Interface Elements
      13.2. Discontinuous Galerkin Methods
      References
      14. Meshless and Partition-of-unity Methods
      14.1. Meshless Methods
      14.1.1. Element-free Galerkin Method
      14.1.2. Application to Fracture
      14.1.3. Higher-order Damage Mechanics
      14.1.4. Volumetric Locking
      14.2. Partition-of-unity Approaches
      14.2.1. Application to Fracture
      14.2.2. Extension to Large Deformations
      14.2.3. Dynamic Fracture
      14.2.4. Weak Discontinuities
      References
      15. Isogeometric Finite Element Analysis
      15.1. Basis Functions in Computer Aided Geometric Design
      15.1.1. Univariate B-splines
      15.1.2. Univariate NURBS
      15.1.3. Multivariate B-splines and NURBS Patches
      15.1.4. T-splines
      15.2. Isogeometric Finite Elements
      15.2.1. Bezier Element Representation
      15.2.2. Bezier Extraction
      15.3. PyFEM: Shape Functions for Isogeometric Analysis
      15.4. Isogeometric Analysis in Non-linear Solid Mechanics
      15.4.1. Design-through-analysis of Shell Structures
      15.4.2. Higher-order Damage Models
      15.4.3. Cohesive Zone Models
      References.
    Session Timeout
    New Session