New Search Search History

Holdings Information

    Gears and gear drives / Damir Jelaska.

    • Title:Gears and gear drives / Damir Jelaska.
    •    
    • Author/Creator:Jelaska, Damir.
    • Published/Created:Chichester, West Sussex : John Wiley & Sons, 2012.
    • Holdings

       
    • Library of Congress Subjects:Gearing.
    • Description:xvi, 444 pages : illustrations ; 26 cm.
    • Notes:Includes bibliographical references and index.
    • ISBN:9781119941309 (cloth)
      111994130X (cloth)
    • Contents:Machine generated contents note: 1. Introduction
      1.1. Power Transmissions and Mechanical Drives
      1.2. Classification of Mechanical Drives
      1.3. Choosing a Mechanical Drive
      1.4. Multi-Step Drives
      1.5. Features and Classification of Gear Drives
      1.5.1. Features of Gear Drives
      1.5.2. Classification of Gear Drives
      1.6. List of Symbols
      1.6.1. Subscripts to Symbols
      2. Geometry of Cylindrical Gears
      2.1. Fundamentals of the Theory of Toothing
      2.1.1. Centrodes, Roulettes and Axodes
      2.1.2. Envelopes, Evolutes and Involutes
      2.1.3. Cycloid and Involute of a Circle
      2.1.3.1. Cycloid
      2.1.3.2. Involute of Circle
      2.1.4. Main Rule of Toothing
      2.1.4.1. Analytical Determining of Mated Profiles
      2.1.4.2. Radii of Curvature of Mated Profiles
      2.2. Geometry of Pairs of Spur Gears
      2.2.1. Cycloid Toothing
      2.2.2. Involute Toothing
      2.3. Involute Teeth and Involute Gears
      2.4. Basic Tooth Rack
      2.5. Fundamentals of Cylindrical Gears Manufacture
      2.5.1. Generating Methods
      2.5.2. Forming Methods
      2.5.3. Gear Finishing
      2.5.4. Basic Rack-Type and Pinion-Type Cutters
      2.6. Cutting Process and Geometry of Gears Cut with Rack-Type Cutter
      2.6.1. Profile Shift
      2.6.2. Meshing of Rack Cutter with Work Piece, Basic Dimensions of Gear
      5.6.3. Tooth Thickness at Arbitrary Circle
      5.6.4. Tip Circle Diameter
      5.6.5. Profile Boundary Point; Tooth Root Undercutting
      2.6.6. Effect of Profile Shift on Tooth Geometry
      2.6.7. Gear Control Measures
      2.6.7.1. Chordal Tooth Thickness on the Arbitrary Circle
      2.6.7.2. Constant Chord Tooth Thickness
      2.6.7.3. Span Measurement
      2.6.7.4. Dimension Over Balls
      2.7. Parameters of a Gear Pair
      2.7.1. Working Pressure Angle of a Gear Pair
      2.7.2. Centre Distance
      2.7.3. Gear Pairs With and Without Profile Shift
      2.7.3.1. Gear Pairs Without Profile Shift
      2.7.3.2. Gear Pairs with Profile Shift
      2.7.4. Contact Ratio
      2.7.5. Distinctive Points of Tooth Profile
      2.7.6. Kinematic Parameters of Toothing
      2.8. Basic Parameters of Gears Generated by the Fellows Method
      2.8.1. Pinion-Type Cutter
      2.8.2. Dimensions of Gears Cut by Pinion-Type Cutter
      2.8.3. Undercutting the Tooth Root
      2.8.4. Geometry of Internal Gear Toothing
      2.9. Interferences in Generating Processes and Involute Gear Meshing
      2.9.1. Interferences in Tooth Cutting
      2.9.1.1. Tooth Root Undercutting
      2.9.1.2. Overcutting the Tooth Addendum (First Order Interference)
      2.9.1.3. Overcutting the Tooth Tip Corner (Second Order Interference)
      2.9.1.4. Radial Interference (Third Order Interference)
      2.9.1.5. Null Fillet
      2.9.2. Interferences in Meshing the Gear Pair Teeth
      2.9.2.1. Gear Root Interference
      2.9.2.2. Interferences of Tooth Addendum
      2.9.2.3. Radial Interference
      2.10. Choosing Profile Shift Coefficients
      2.10.1. Choosing Profile Shift Coefficients by Means of Block-Contour Diagrams
      2.10.2. Choosing Profile Shift Coefficients by Means of Lines of Gear Pairs
      2.11. Helical Gears
      2.11.1. Basic Considerations
      2.11.2. Helical Gear Dimensions and Parameters of a Gear Pair
      2.11.3. Control Measures
      2.11.4. Helical Gear Overlaps
      2.11.4.1. Length of Contact Lines
      2.12. Tooth Flank Modifications
      2.12.1. Transverse Profile Modifications
      2.12.1.1. Pre-Finish Flank Undercut
      2.12.1.2. Tip Corner Chamfering and Tip Corner Rounding
      2.12.1.3. Tooth Tip Relief
      2.12.1.4. Tooth Root Relief
      2.12.1.5. Tooth Tip Relief of the Gear Generated by Pinion-Type Cutter
      2.12.1.6. Profile Crowning
      2.12.2. Flank Line Modifications
      2.12.2.1. Flank Line end Reliefs
      2.12.2.2. Flank Line Slope Modification
      2.12.2.3. Flank Line Crowning
      2.12.3. Flank Twist
      2.13. Geometry of Fillet Curve
      2.13.1. Fillet Curve Equation
      2.13.1. Fillet Curve Radius of Curvature
      2.13.2. Geometry of Undercut Teeth
      2.13.3.1. Profile Boundary Point
      2.13.3.2. Contact Ratio of Gears with. Undercut Teeth
      2.14. Tolerances of Pairs of Cylindrical Gears
      2.14.1. Control and Tolerances of Gear Body
      2.14.2. Control and Tolerances of Teeth
      2.14.2.1. Tooth Profile Control
      2.14.2.2. Helix Deviations
      2.14.2.3. Pitch Deviations
      2.14.2.4. Radial Runout of Teeth
      2.14.2.5. Tangential Composite Deviation
      2.14.2.6. Tooth Thickness Tolerances
      2.14.2.7. CNC Gear Measuring Centre
      2.14.3. Control of Gear Pair Measuring Values
      2.14.3.1. Systems of Gear Fits, Centre Distance Tolerances, Backlash
      2.14.3.2. Contact Pattern Control
      2.15. Gear Detail Drawing
      2.16. List of Symbols
      2.16.1. Subscripts to symbols
      2.16.2. Combined Symbols
      3. Integrity of Gears
      3.1. Gear Loadings
      3.1.1. Forces Acting on the Gear Tooth
      3.1.2. Incremental Gear Loadings
      3.2. Causes of Gear Damage
      3.2.1. Gear Breakages
      3.2.2. Active Tooth Flank Damage
      3.3. Pitting Load Capacity
      3.3.1. Contact Stresses
      3.3.1.1. Nominal Value of Contact Stress
      3.3.1.2. Real Value of Contact Stress
      3.3.2. Allowable Contact Stresses
      3.3.3. Dimensioning for Contact Stress
      3.3.4. List of Symbols for Sections 3.1, 3.2 and 3.3
      3.3.4.1. Subscripts to Symbols
      3.3.4.2. Combined Symbols
      3.4. Tooth Root Load Capacity
      3.4.1. Tooth Root Stress
      3.4.2. Tooth Root Permitted Stress
      3.4.3. Dimensioning for Tooth Root Stress
      3.5. Gear Load Capacity at Variable Loading
      3.6. List of Symbols for Sections 3.4 and 3.5
      3.6.1. Subscripts to Symbols
      3.6.2. Combined Symbols
      3.7. Scuffing Load Capacity
      3.7.1. Safety Factor Against Scuffing for Flash Temperature Method
      3.7.2. Force Distribution Factor Xr
      3.7.3. Safety Factor Against Scuffing for Integral Temperature Method
      3.8. Micro-Pitting Load Capacity
      3.8.1. Elastohydrodynamic Lubricant Film Thickness
      3.8.1.1. Calculation of Material Parameter GM
      3.8.1.2. Calculation Speed Parameter UY
      3.8.1.3. Load Parameter WY
      3.8.1.4. Sliding Parameter SGF
      3.8.2. Safety Factor Against Micro-pitting
      3.9. List of Symbols for Sections 3.6 and 3.7
      3.9.1. Subscripts to Symbols
      3.9.2. Combined Symbols
      4. Elements of Cylindrical Gear Drive Design
      4.1. Design Process
      4.1.1. Design Procedure for a Gear Pair
      4.1.2. Distribution of Gear Train Transmission Ratio
      4.1.3. Gear Materials and Heat Treatment
      4.1.3.1. Metallic Materials and their Heat Treatment
      4.1.3.2. Sintered Materials
      4.1.3.3. Polymer Materials
      4.1.4. Gear Drive Design
      4.1.4.1. Design of Housing
      4.1.4.2. Vents
      4.1.4.3. Lubricant Drain
      4.1.4.4. Design of Bearing Locations
      4.1.4.5. Design of Ribs
      4.1.5. Design of Gears
      4.2. Gear Drive Lubrication
      4.2.1. Selection of Lubricant
      4.2.2. Ways of Gear Lubrication
      4.2.2.1. Bath Lubrication
      4.2.2.2. Spray Lubrication
      4.3. Power Losses and Temperature of Lubricant
      4.3.1. Power Losses in Mesh
      4.3.1.1. Power Losses in Mesh, Under Load, for a Single Gear Pair
      4.3.1.2. Power Losses in Idle Motion
      4.3.2. Power Losses in Bearings
      4.3.2.1. Rolling Bearings
      4.3.2.2. Sliding Bearings
      4.3.3. Power Losses in Seals
      4.3.4. Power Efficiency of Gear Drive
      4.3.5. Temperature of Lubricant
      4.4. List of Symbols
      4.4.1. Subscripts to Symbols
      4.4.2. Combined Symbols
      5. Bevel Gears
      5.1. Geometry and Manufacture of Bevel Gears
      5.1.1. Theory of Bevel Gear Genesis
      5.1.2. Types and Features of Bevel Gears
      5.1.3. Application of Bevel Gears
      5.1.4. Geometry of Bevel Gears
      5.1.4.1. Fundamentals of Geometry and Manufacture
      5.1.4.2. Virtual Toothing and Virtual Gears
      5.1.4.3. Basic Parameters of Straight Bevels
      5.1.4.4. Design of Bevel Teeth
      5.1.4.5. Undercut, Profile Shift
      5.1.4.6. Sliding of Bevels
      5.1.4.7. Contact Ratio of Straight Bevels
      5.1.5. Geometry of Helical and Spiral Bevels
      5.1.6. Manufacturing Methods for Bevel Gears
      5.1.6.1. Straight Bevels Working
      5.1.6.2. Spiral and Helical Bevel Working
      5.2. Load Capacity of Bevels
      5.2.1. Forces in Mesh
      5.2.2. Pitting Load Capacity
      5.2.3. Tooth Root Load Capacity
      5.2.3.1. Scuffing and Micro-Pitting Load Capacities
      5.3. Elements of Bevel Design
      5.4. Control and Tolerances of Bevel Gears
      5.4.1. Pitch Control
      5.4.2. Radial Runout Control of Toothing
      5.4.3. Tangential Composite Deviation
      5.4.4. Tooth Thickness Control
      5.4.5. Bevel Gear Drawing
      5.5. Crossed Gear Drives
      5.5.1. Basic Geometry
      5.5.2. Speed of Sliding
      5.5.3. Loads and Load Capacity
      5.5.3.1. Forces Acting on Crossed Gears
      5.5.3.2. Efficiency Grade
      5.5.3.3. Load Capacity of Crossed Gear Pair
      5.6. List of Symbols
      5.6.1. Subscripts to Symbols
      5.6.2. Combined Symbols
      6. Planetary Gear Trains
      6.1. Introduction
      6.1.1. Fundamentals of Planetary Gear Trains
      6.1.2. Rotational Speeds and Transmission Ratio
      6.1.3. Features of Planetary Gear Trains
      6.1.4. Mating Conditions
      6.1.4.1. Condition of Coaxiality
      6.1.4.2. Condition of Neighbouring
      6.1.4.3. Assembly Condition
      6.1.5. Diagrams of Peripheral and Rotational Speeds
      6.1.6. Wolf Symbolic
      6.1.7. Forces, Torques and Power of Planetary Gear Trains
      6.1.7.1. Peripheral Forces and Torques
      6.1.7.2. Power and Efficiency
      Contents note continued: 6.1.7.3. Branching of Power
      6.7.7.4. Self-Locking
      6.2. Special Layouts of Simple Planetary Gear Trains
      6.2.1. Bevel Differential Trains
      6.2.2. Planetary Gear Trains with Single Gear Pair
      6.2.3. Harmonic Drive
      6.2.4. Differential Planetary Gear Trains
      6.2.5. Planetary Gear Train of a Wankel Engine
      6.3. Composed Planetary Gear Trains
      6.3.1. Compound Planetary Gear Trains
      6.3.2. Parallel Composed Planetary Gear Trains
      6.3.3. Coupled Planetary Gear Trains
      6.3.4. Closed Planetary Gear Trains
      6.3.5. Reduced Coupled Planetary Gear Trains
      6.3.6. Reverse Reducers
      6.3.7. Planetary Gear Boxes
      6.4. Elements of Planetary Gear Train Design
      6.4.1. Issues of Planetary Gear Train Design
      6.4.2. Calculations for Central Gears and Planets
      6.5. List of Symbols
      6.5.1. Subscripts to Symbols
      6.5.2. Combined Symbols
      7. Worm Gear Drives
      7.1. Concept, Features, Classification
      7.2. Geometry and Working of Worm Gear Pair
      7.2.1. Geometry and Working of Worm
      7.2.1.1. Dimensions of Worm
      7.2.1.2. Worm Sections
      7.2.1.3. Worm Working and Shape of Flanks
      7.2.2. Geometry and Working of' Wormwheels
      7.2.2.1. Wormwheel Geometry
      7.2.2.2. Wormwheel Working
      7.2.3. Calculation Values of Worm Gear Pair
      7.2.3.1. Centre Distance of Worm Gear Pair
      7.2.3.2. Transmission Ratio and Gear Ratio
      7.2.3.3. Tip Clearance of Worm Gear Pair
      7.2.3.4. Contact Ratio of Worm Gear Pair
      7.2.3.5. Worm Gear Pair Speeds
      7.3. Control Measures and Tolerances of Worm Gear Pair
      7.3.1. Control of Worm Measuring Values
      7.3.1.1. Pitch Control
      7.3.1.2. Thread Profile Control
      7.3.1.3. Radial Runout Control
      7.3.2. Control of Wormwheel Measuring Values
      7.3.2.1. Pitch Control
      7.3.2.2. Tooth Profile Control
      7.3.2.3. Radial Run-Out Control
      7.3.2.4. Tooth Thickness Control
      7.3.2.5. Composite Deviation Control
      7.3.3. Measuring Values Control of Worm Gear Pair
      7.3.3.1. Centre Distance Control
      7.3.3.2. Backlash Control
      7.4. Forces, Power Losses and Efficiency of Worm Gear Drives
      7.4.1. Forces Acting on Worm Gear Pair
      7.4.2. Power Losses and Efficiency of Worm Gear Pair
      7.5. Load Capacity of Worm Gear Pair
      7.5.1. Wear Load Capacity
      7.5.1.1. Calculation of Expected Wear
      7.5.1.2. Permitted Wear
      7.5.2. Pitting Load Capacity
      7.5.3. Heating Load Capacity
      7.5.3.1. Heating Load Capacity at Bath Lubrication
      7.5.3.2. Heating Load Capacity at Spray Lubrication
      7.5.4. Wormwheel Bulk Temperature
      7.5.4.1. Wormwheel Bulk Temperature in Bath Lubrication
      7.5.4.2. Wormwheel Bulk Temperature in Spray Lubrication
      7.5.5. Wormwheel Tooth Root Load Capacity
      7.5.5.1. Shear Stress in Wormwheel Tooth Root
      7.5.5.2. Shear Fatigue Limit of Wormwheel Tooth
      7.5.6. Load Capacity for Worm Shaft Deflection
      7.6. Elements of Worm Gear Drive Design
      7.6.1. Design Procedure
      7.6.1.1. Previous Choices
      7.6.1.2. Dimensioning the Worm Gear Pair
      7.6.2. Design Details of Worm Gear Drive
      7.7. List of Symbols
      7.7.1. Subscripts to Symbols
      7.7.2. Combined Symbols.
    Session Timeout
    New Session