New Search Search History

Holdings Information

    Separation and purification technologies in biorefineries / Shri Ramaswamy, Hua-Jiang Huang, Bandaru V. Ramarao.

    • Title:Separation and purification technologies in biorefineries / Shri Ramaswamy, Hua-Jiang Huang, Bandaru V. Ramarao.
    •    
    • Author/Creator:Ramaswamy, Shri, 1957-
    • Other Contributors/Collections:Huang, Hua-Jiang.
      Ramarao, B. V.
    • Published/Created:Chichester, West Sussex : John Wiley & Sons Inc., 2013.
    • Holdings

       
    • Library of Congress Subjects:Biomass conversion.
      Biomass energy.
    • Description:xxiv, 584 pages : illustrations ; 26 cm
    • Notes:Includes bibliographical references and index.
    • ISBN:9780470977965 (cloth)
      0470977965 (cloth)
    • Contents:Machine generated contents note: pt. I INTRODUCTION
      1. Overview of Biomass Conversion Processes and Separation and Purification Technologies in Biorefineries / Shri Ramaswamy
      1.1. Introduction
      1.2. Biochemical conversion biorefineries
      1.3. Thermo-chemical and other chemical conversion biorefineries
      1.3.1. Thermo-chemical conversion biorefineries
      1.3.1.1. Example: Biomass to gasoline process
      1.3.2. Other chemical conversion biorefineries
      1.3.2.1. Levulinic acid
      1.3.2.2. Glycerol
      1.3.2.3. Sorbitol
      1.3.2.4. Xylitol/Arabinitol
      1.3.2.5. Example: Conversion of oil-containing biomass for biodiesel
      1.4. Integrated lignocellulose biorefineries
      1.5. Separation and purification processes
      1.5.1. Equilibrium-based separation processes
      1.5.1.1. Absorption
      1.5.1.2. Distillation
      1.5.1.3. Liquid-liquid extraction
      1.5.1.4. Supercritical fluid extraction
      1.5.2. Affinity-based separation
      1.5.2.1. Simulated moving-bed chromatography
      1.5.3. Membrane separation
      1.5.4. Solid-liquid separation
      1.5.4.1. Conventional filtration
      1.5.4.2. Solid-liquid extraction
      1.5.4.3. Precipitation and crystallization
      1.5.5. Reaction-separation systems for process intensification
      1.5.5.1. Reaction-membrane separation systems
      1.5.5.2. Extractive fermentation (Reaction-LLE systems)
      1.5.5.3. Reactive distillation
      1.5.5.4. Reactive absorption
      1.6. Summary
      References
      pt. II EQUILIBRIUM-BASED SEPARATION TECHNOLOGIES
      2. Distillation / Biaohua Chen
      2.1. Introduction
      2.2. Ordinary distillation
      2.2.1. Thermodynamic fundamental
      2.2.2. Distillation equipment
      2.2.3. Application in biorefineries
      2.3. Azeotropic distillation
      2.3.1. Introduction
      2.3.2. Example in biorefineries
      2.3.3. Industrial challenges
      2.4. Extractive distillation
      2.4.1. Introduction
      2.4.2. Extractive distillation with liquid solvents
      2.4.3. Extractive distillation with solid saits
      2.4.4. Extractive distillation with the mixture of liquid solvent and solid salt
      2.4.5. Extractive distillation with ionic liquids
      2.4.6. Examples in biorefineries
      2.5. Molecular distillation
      2.5.1. Introduction
      2.5.2. Examples in biorefineries
      2.5.3. Mathematical models
      2.6. Comparisons of different distillation processes
      2.7. Conclusions and future trends
      Acknowledgement
      References
      3. Liquid-Liquid Extraction (LLE) / Bo Hu
      3.1. Introduction to LLE: Literature review and recent developments
      3.2. Fundamental principles of LLE
      3.3. Categories of LLE design
      3.4. Equipment for the LLE process
      3.4.1. Criteria
      3.4.2. Types of extractors
      3.4.3. Issues with current extractors
      3.5. Applications in biorefineries
      3.5.1. Ethanol
      3.5.2. Biodiesel
      3.5.3. Carboxylic acids
      3.5.4. Other biorefinery processes
      3.6. future development of LLE for the biorefinery setting
      References
      4. Supercritical Fluid Extraction / Enrique Martinez de la Ossa
      4.1. Introduction
      4.2. Principles of supercritical fluids
      4.3. Market and industrial needs
      4.4. Design and modeling of the process
      4.4.1. Film theory
      4.4.2. Penetration theory
      4.5. Specific examples in biorefineries
      4.5.1. Sugar/starch as a raw material
      4.5.2. Supercritical extraction of vegetable oil
      4.5.3. Supercritical extraction of lignocellulose biomass
      4.5.4. Supercritical extraction of microalgae
      4.6. Economic importance and industrial challenges
      4.7. Conclusions and future trends
      References
      pt. III AFFINITY-BASED SEPARATION TECHNOLOGIES
      5. Adsorption / Saravanan Venkatesan
      5.1. Introduction
      5.2. Essential principles of adsorption
      5.2.1. Adsorption isotherms
      5.2.1.1. Freundlich isotherm
      5.2.1.2. Langmuir isotherm
      5.2.1.3. BET isotherm
      5.2.1.4. Ideal adsorbed solution (IAS) theory
      5.2.2. Types of adsorption isotherm
      5.2.3. Adsorption hysteresis
      5.2.4. Heat of adsorption
      5.3. Adsorbent selection criteria
      5.4. Commercial and new adsorbents and their properties
      5.4.1. Activated carbon
      5.4.2. Silica gel
      5.4.3. Zeolites and molecular sieves
      5.4.4. Activated alumina
      5.4.5. Polymeric resins
      5.4.6. Bio-based adsorbents
      5.4.7. Metal organic frameworks (MOF)
      5.5. Adsorption separation processes
      5.5.1. Adsorbate concentration
      5.5.2. Modes of adsorber operation
      5.5.3. Adsorbent regeneration methods
      5.5.3.1. Selection of regeneration method
      5.5.3.2. Temperature swing adsorption (TSA)
      5.5.3.3. Pressure swing adsorption (PSA)
      5.6. Adsorber modeling
      5.7. Application of adsorption in biorefineries
      5.7.1. Examples of adsorption systems for removal of fermentation inhibitors from lignocellulosic biomass hydrolysate
      5.7.2. Examples of adsorption systems for recovery of biofuels from dilute aqueous fermentation broth
      5.7.2.1. In situ recovery of 1-butanol
      5.7.2.2. Recovery of other prospective biofuel compounds
      5.7.2.3. Ethanol dehydration
      5.7.2.4. Biodiesel purification
      5.8. case study: Recovery of 1-butanol from ABE fermentation broth using TSA
      5.8.1. Introduction
      5.8.2. Adsorbent in extrudate form
      5.8.3. Adsorption kinetics
      5.8.4. Adsorption of 1-butanol by CBV28014 extrudates in a packed-bed column
      5.8.5. Desorption
      5.8.6. Equilibrium isotherms
      5.8.7. Simulation of breakthrough curves
      5.8.8. Summary from case study
      5.9. Research needs and prospects
      5.10. Conclusions
      Acknowledgement
      References
      6. Ion Exchange / A. Martin
      6.1. Introduction
      6.1.1. Ion exchangers: Operational conditions
      -sorbent selection
      6.2. Essential principles
      6.2.1. Properties of ion exchangers
      6.3. Ion-exchange market and industrial needs
      6.4. Commercial ion-exchange resins
      6.4.1. Strong acid cation resins
      6.4.2. Weak acid cation resins
      6.4.3. Strong base anion resins
      6.4.4. Weak base anion resins
      6.5. Specific examples in biorefineries
      6.5.1. Water softening
      6.5.2. Total removal of electrolytes from water
      6.5.3. Removal of nitrates in water
      6.5.4. Applications in the food industry
      6.5.5. Applications in chromatography
      6.5.6. Special applications in water treatment
      6.5.7. Metal recovery
      6.5.8. Separation of isotopes or ions
      6.5.9. Applications of zeolites in ion-exchange processes
      6.5.10. Applications of ion exchange in catalytic processes
      6.5.11. Recent applications of ion exchange in lignocellulosic bioefineries
      6.5.12. Recent applications of ion exchange in biodiesel bioefineries
      6.6. Conclusions and future trends
      References
      7. Simulated Moving-Bed Technology for Biorefinery Applications / Nien-Hwa Linda Wang
      7.1. Introduction
      7.1.1. Principles of separations in batch chromatography and SMB
      7.1.2. advantages of SMB
      7.1.3. brief history of SMB and its applications
      7.1.4. Barriers to SMB applications
      7.2. Essential SMB design principles and tools
      7.2.1. Knowledge-driven design
      7.2.2. Design and optimization for multicomponent separation
      7.2.2.1. Standing-wave analysis (SWA)
      7.2.2.2. Splitting strategies for multicomponent SMB systems
      7.2.2.3. Comprehensive optimization with standing-wave (COSW)
      7.2.2.4. Other design methodologies
      7.2.3. SMB chromatographic simulation
      7.2.4. SMB equipment
      7.2.5. Advanced SMB operations
      7.2.5.1. Simulated moving-bed reactors
      7.2.6. SMB commercial manufacturers
      7.3. Simulated moving-bed technology in biorefineries
      7.3.1. SMB separation of sugar hydrolysate and concentrated sulfuric acid
      7.3.2. Five-zone SMB for sugar isolation from dilute-acid hydrolysate
      7.3.3. Simulated moving-bed purification of lactic acid in fermentation broth
      7.3.4. SMB purification of glycerol by-product from biodiesel processing
      7.4. Conclusions and future trends
      References
      pt. IV MEMBRANE SEPARATION
      8. Microfiltration, Ultrafiltration and Diafiltration / Ann-Sofi Jonsson
      8.1. Introduction
      8.1.1. Applications of microfiltration
      8.1.2. Applications of ultrafiltration
      8.2. Membrane plant design
      8.2.1. Single-stage membrane plants
      8.2.2. Multistage membrane plants
      8.2.3. Membranes
      8.2.4. Membrane modules
      8.2.5. Design and operation of membrane plants
      8.3. Economic considerations
      8.3.1. Capital cost
      8.3.2. Operating costs
      8.4. Process design
      8.4.1. Flux during concentration
      8.4.2. Retention
      8.4.3. Recovery and purity
      8.5. Operating parameters
      8.5.1. Pressure
      8.5.2. Cross-flow velocity
      8.5.3. Temperature
      8.5.4. Concentration
      8.5.5. Influence of concentration polarization and critical flux on retention
      8.6. Diafiltration
      8.7. Fouling and cleaning
      8.7.1. Fouling
      8.7.2. Pretreatment
      8.7.3. Cleaning
      8.8. Conclusions and future trends
      References
      9. Nanofiltration / Marianne Nystrom
      9.1. Introduction
      9.2. Nanofiltration market and industrial needs
      9.3. Fundamental principles
      9.3.1. Pressure and flux
      9.3.2. Retention and fractionation
      9.3.3. Influence of filtration parameters
      9.4. Design and simulation
      9.4.1. Water permeation
      9.4.2. Solute retention
      9.4.2.1. Retention of organic components
      9.4.2.2. Retention of inorganic components
      Contents note continued: 9.5. Membrane materials and properties
      9.5.1. Structure of NF membranes
      9.5.2. Hydrophilic and hydrophobic characteristics
      9.5.3. Charge characteristics
      9.6. Commercial nanofiltration membranes
      9.7. Nanofiltration examples in biorefineries
      9.7.1. Recovery and purification of monomeric acids
      9.7.1.1. Separation of lactic acid and amino acids in fermentation plants
      9.7.1.2. Separation of lactic acid from cheese whey fermentation broth
      9.7.2. Biorefineries connected to pulping processes
      9.7.2.1. Valorization of black liquor compounds
      9.7.2.2. Purification of pre-extraction liquors and hydrolysates
      9.7.2.3. Examples of monosaccharides purification
      9.7.2.4. Nanofiltration to treat sulfite pulp mill liquors
      9.7.3. Miscellaneous studies on extraction of natural raw materials
      9.7.4. Industrial examples of NF in biorefinery
      9.7.4.1. Recovery and purification of sodium hydroxide in viscose production
      9.7.4.2. Xylose recovery and purification into permeate
      9.7.4.3. Purification of dextrose syrup
      9.8. Conclusions and challenges
      References
      10. Membrane Pervaporation / Tai-Shung Chung
      10.1. Introduction
      10.2. Membrane pervaporation market and industrial needs
      10.3. Fundamental principles
      10.3.1. Transport mechanisms
      10.3.2. Evaluation of pervaporation membrane performance
      10.4. Design principles of the pervaporation membrane
      10.4.1. Membrane materials and selection
      10.4.1.1. Polymeric pervaporation membranes for bioalcohol dehydration
      10.4.1.2. Pervaporation membranes for biofuel recovery
      10.4.2. Membrane morphology
      10.4.3. Commercial pervaporation membranes
      10.5. Pervaporation in the current integrated biorefinery system
      10.6. Conclusions and future trends
      Acknowledgements
      References
      11. Membrane Distillation / M. A. Lzquierdo-Gil
      11.1. Introduction
      11.1.1. Direct-contact membrane distillation (DCMD)
      11.1.2. Air gap membrane distillation (AGMD)
      11.1.3. Sweeping gas membrane distillation (SGMD)
      11.1.4. Vacuum membrane distillation (VMD)
      11.2. Membrane distillation market and industrial needs
      11.2.1. Pure water production
      11.2.2. Waste water treatment
      11.2.3. Concentration of agro-food solutions
      11.2.4. Concentration of organic and biological solutions
      11.3. Basic principles of membrane distillation
      11.3.1. Mass transfer
      11.3.2. Concentration polarization phenomena
      11.3.3. Heat transport
      11.3.4. Liquid entry pressure
      11.4. Design and simulation
      11.5. Examples in biorefineries
      11.6. Economic importance and industrial challenges
      11.7. Comparisons with other membrane-separation technologies
      11.8. Conclusions and future trends
      References
      pt. V SOLID-LIQUID SEPARATIONS
      12. Filtration-Based Separations in the Biorefinery / Bandaru V. Ramarao
      12.1. Introduction
      12.2. Biorefinery
      12.2.1. Pretreatment
      12.2.2. Hydrolyzate separations
      12.2.3. Downstream fermentation and separations
      12.3. Solid-liquid separations in the biorefinery
      12.4. Introduction to cake filtration
      12.5. Basics of cake filtration
      12.5.1. Application in biorefineries
      12.5.2. Specific points of interest
      12.6. Designing a dead-end filtration
      12.6.1. Determination of specific resistance
      12.6.2. Membrane fouling
      12.6.3. effect of pressure on specific resistance
      -cake compressibility
      12.6.4. Relating cake compressibility to cake particles morphology
      12.6.5. Effects of particles surface properties and the medium liquid
      12.6.6. Fouling in filtration of lignocellulosic hydrolyzates
      12.7. Model development
      12.7.1. Requirements of a model
      12.8. Conclusions
      References
      13. Solid-Liquid Extraction in Biorefinery / Mohd Yusof Harun
      13.1. Introduction
      13.2. Principles of solid-liquid extraction
      13.2.1. Extraction mode
      13.2.1.1. Single-stage, batch
      13.2.1.2. Multistage crosscurrent flow
      13.2.1.3. Multistage countercurrent flow
      13.2.2. Solid-liquid extraction techniques
      13.2.2.1. Solvent extraction
      13.2.2.2. High-pressure extraction
      13.2.2.3. Ultrasonic-assisted extraction
      13.2.2.4. Microwave-assisted extraction
      13.2.2.5. Heat reflux extraction
      13.3. State of the art technology
      13.4. Design and modeling of SLE process
      13.4.1. Pretreatment of raw materials
      13.4.2. Solid-liquid extraction
      13.4.3. Equipment and operational setup
      13.4.4. Process modeling
      13.4.5. Scaling up
      13.5. Industrial extractors
      13.5.1. Batch extractors
      13.5.2. Continuous extractors
      13.5.3. Extraction of specialty chemicals
      13.6. Economic importance and industrial challenges
      13.7. Conclusions
      References
      pt. VI HYBRID/INTEGRATED REACTION-SEPARATION SYSTEMS-PROCESS INTENSIFICATION
      14. Membrane Bioreactors for Biofuel Production / Joaquim M. S. Cabral
      14.1. Introduction
      14.1.1. Opportunities for membrane bioreactor in biofuel production
      14.1.2. market and industry needs
      14.2. Basic principles
      14.2.1. Biofuels: Production principles and biological systems
      14.2.2. Transport in membrane systems
      14.2.3. Membrane modules and reactor operations
      14.2.4. Membrane bioreactor
      14.3. Examples of membrane bioreactors for biofuel production
      14.3.1. Bioethanol production
      14.3.1.1. Overview
      14.3.1.2. Membrane bioreactors for cell retention and ethanol removal
      14.3.1.3. Upstream saccharification stage: Retention of hydrolytic enzymes and sugar permeation
      14.3.1.4. Downstream ethanol purification stage: Pervaporation
      14.3.2. Biodiesel production
      14.3.2.1. Overview
      14.3.2.2. Membrane bioreactor for biodiesel production
      14.3.3. Biogas production
      14.3.3.1. Overview
      14.3.3.2. Membrane bioreactor for biogas production
      14.4. Conclusions and future trends
      References
      15. Extraction-Fermentation Hybrid (Extractive Fermentation) / Congcong Lu
      15.1. Introduction
      15.2. market and industrial needs
      15.3. Basic principles of extractive fermentation
      15.4. Separation technologies for integrated fermentation product recovery
      15.4.1. Gas stripping
      15.4.2. Pervaporation
      15.4.3. Liquid-liquid extraction
      15.4.4. Adsorption
      15.4.5. Electrodialysis
      15.5. Examples in biorefineries
      15.5.1. Extractive ABE fermentation for enhanced butanol production
      15.5.2. Extractive fermentation for organic acids production
      15.6. Economic importance and industrial challenges
      15.7. Conclusions and future trends
      References
      16. Reactive Distillation for the Biorefinery / Dennis J. Miller
      16.1. Introduction
      16.1.1. Reactive distillation process principles
      16.1.2. Motives for application of reactive distillation
      16.1.2.1. Reaction properties
      16.1.2.2. Separation properties
      16.1.3. Limitations and disadvantages of reactive distillation
      16.1.4. Homogeneous and heterogeneous reactive distillation
      16.2. Column internals for reactive distillation
      16.2.1. Random or dumped catalyst packings
      16.2.2. Catalytic distillation trays
      16.2.3. Catalyst bales
      16.2.4. Structured packings
      16.2.5. Internally finned monoliths
      16.3. Simulation of reactive distillation systems
      16.3.1. Phase equilibria
      16.3.2. Characterization of reaction kinetics
      16.3.3. Calculation of residue curve maps
      16.3.4. Simulation and design of reactive distillation systems
      16.3.4.1. Equilibrium stage model
      16.3.4.2. Rate-based model
      16.3.4.3. Design of reactive distillation systems
      16.4. Reactive distillation for the biorefinery
      16.4.1. Esterification of carboxylic acids and transesterification of esters
      16.4.1.1. Biodiesel production
      16.4.1.2. Esterification of long-chain fatty acids
      16.4.1.3. Lactate esterification
      16.4.1.4. Short-chain organic acid esterification
      16.4.1.5. Reactive distillation for glycerol esterification
      16.4.2. Etherification
      16.4.3. Acetal formation
      16.4.4. Reactive distillation for thermochemical conversion pathways
      16.5. Recently commercialized reactive distillation processes for the biorefinery
      16.6. Conclusions
      References
      17. Reactive Absorption / Costin Sorin Bildea
      17.1. Introduction
      17.2. Market and industrial needs
      17.3. Basic principles of reactive absorption
      17.4. Modelling, design and simulation
      17.5. Case study: Biodiesel production by catalytic reactive absorption
      17.5.1. Problem statement
      17.5.2. Heat-integrated process design
      17.5.3. Property model and kinetics
      17.5.4. Steady-state simulation results
      17.5.5. Sensitivity analysis
      17.5.6. Dynamics and plantwide control
      17.6. Economic importance and industrial challenges
      17.7. Conclusions and future trends
      References
      pt. VII CASE STUDIES OF SEPARATION AND PURIFICATION TECHNOLOGIES IN BIOREFINERIES
      18. Cellulosic Bioethanol Production / Guido Zacchi
      18.1. Introduction: The market and industrial needs
      18.2. Separation procedures and their integration within a bioethanol plant
      18.2.1. Process configurations
      18.3. Importance and challenges of separation processes
      18.3.1. Distillation
      18.3.2. Dehydration of ethanol
      18.3.2.1. Adsorption on zeolites
      18.3.2.2. Pervaporation and vapor permeation
      18.3.3. Evaporation
      18.3.4. Liquid-solid separation
      Contents note continued: 18.3.4.1. Filtration of solid residue (lignin)
      18.3.4.2. Recovery of yeast
      18.3.5. Drying of solids
      18.3.5.1. Air dryer heated to low temperature by waste heat
      18.3.5.2. Air dryer heated by back-pressure steam
      18.3.5.3. Superheated steam dryer heated by high pressure steam
      18.3.6. Upgrading of biogas
      18.4. Pilot and demonstration scale
      18.5. Conclusions and future trends
      References
      19. Dehydration of Ethanol using Pressure Swing Adsorption / Marian Simo
      19.1. Introduction
      19.2. Ethanol dehydration process using pressure swing adsorption
      19.2.1. Adsorption equilibrium and kinetics
      19.2.2. Principle of pressure swing adsorption
      19.2.3. Ethanol PSA process cycle
      19.2.3.1. Two-bed ethanol PSA cycle steps
      19.2.4. Process performance and energy needs
      19.3. Future trends and industrial challenges
      19.4. Conclusions
      References
      20. Separation and Purification of Lignocellulose Hydrolyzates / G. Peter van Walsum
      20.1. Introduction
      20.1.1. Sugar platform
      20.1.2. Biomass hydrolysis
      20.1.3. Biomass pretreatment
      20.1.4. Wood degradation products and potential biological inhibitors
      20.1.5. Detoxification of wood hydrolysates
      20.2. market and industrial needs
      20.2.1. Microbial inhibition by biomass degradation products
      20.2.2. Enzyme inhibition by biomass degradation products
      20.3. Operation variables and conditions
      20.3.1. Effects of pretreatment conditions on enzymes and microbial cultures
      20.3.2. Quantification of microbial inhibitors in pretreatment hydrolysates
      20.3.3. Separations challenges posed by biomass degradation products
      20.4. hydrolyzates detoxification and separation processes
      20.4.1. Evaporation, flashing
      20.4.2. High pH treatment
      20.4.2.1. Cation effects in overliming
      20.4.2.2. pH and temperature effects
      20.4.2.3. Different fermentative organisms
      20.4.3. Adsorption
      20.4.4. Liquid-liquid extraction
      20.4.5. Ion exchange
      20.4.6. Polymer-induced flocculation
      20.4.7. Dialysis
      20.4.8. Microbial detoxification
      20.4.9. Enzyme detoxification
      20.4.10. Microbial accommodation of inhibitors
      20.5. Separation performances and results
      20.6. Economic importance and industrial challenges
      20.6.1. Cost of slow enzymes
      20.6.2. Cost of slow fermentations
      20.6.3. Benefits of co-products
      20.6.4. Material consumption
      20.6.5. Complexity: Capital and operating cost
      20.6.6. Waste reduction
      20.7. Conclusions
      References
      21. Case Studies of Separation in Biorefineries
      -Extraction of Algae Oil from Microalgae / Michael Cooney
      21.1. Introduction
      21.2. market and industrial needs
      21.2.1. Feedstock markets
      21.2.2. Biodiesel markets
      21.2.3. Algae products
      21.2.4. Industrial needs
      21.3. algae oil extraction process
      21.3.1. Harvesting/isolation
      21.3.2. Drying
      21.3.3. Cell wall lyses/disruption
      21.4. Extraction
      21.4.1. Organic-solvent based
      21.4.2. Aqueous based
      21.4.3. Combined aqueous and organic phases
      21.4.4. Supercritical fluids
      21.4.5. Solventless extraction
      21.4.6. Emerging technologies
      21.4.7. Refining lipids
      21.5. Separation performance and results
      21.6. Economic importance and industrial challenges
      21.7. Conclusions and future trends
      References
      22. Separation Processes in Biopolymer Production / Bhaskar D. Kulkarni
      22.1. Introduction
      22.2. market and industrial needs
      22.3. Lactic acid recovery processes
      22.3.1. Electrodialysis
      22.3.2. Adsorption
      22.3.3. Reactive extraction
      22.3.4. Reverse osmosis
      22.3.5. Reactive distillation
      22.4. Separation performance and results of autocatalytic counter current reactive distillation of lactic acid with methanol and hydrolysis of methyl lactate into highly pure lactic acid using 3-CSTRs in series
      22.5. Economic importance and industrial challenges
      22.6. Conclusions and future trends
      Acknowledgements
      References.
    Session Timeout
    New Session