New Search Search History

Holdings Information

    Thermodynamics and applications in hydrocarbons energy production / Abbas Firoozabadi.

    • Title:Thermodynamics and applications in hydrocarbons energy production / Abbas Firoozabadi.
    •    
    • Author/Creator:Firoozabadi, Abbas, author.
    • Published/Created:New York ; Athens ; London ; Singapore ; Toronto ; McGraw-Hill Education [2016]
      ©2016
    • Holdings

       
    • Library of Congress Subjects:Thermodynamics.
      Thermodynamic equilibrium.
      Fluid dynamics.
      Power (Mechanics)
      Hydrocarbons.
    • Description:xxiv, 467 pages : illustrations ; 25 cm
    • Notes:Includes bibliographical references and index.
    • ISBN:9780071843256 (hardback)
      0071843256 (hardback)
    • Contents:Machine generated contents note: 1.1. Conditions for Equilibrium
      1.1.1. Thermal Equilibrium
      1.1.2. Mechanical Equilibrium
      1.1.3. Chemical Equilibrium
      1.2. Mathematical Properties of U and S
      1.3. Gibbs-Duhem Equation
      1.4. Other Fundamental Equations
      1.5. Internal Energy Minimum Principle
      1.5.1. Relation between Partial Derivatives of Implicit Functions
      1.5.2. Reciprocity Relation
      1.6. Chemical Potential of a Component in a Mixture
      1.7. Partial Molar Quantities
      1.8. Fugacity
      1.9. Ideal and Nonideal Fluids
      1.9.1. Ideal Gas
      1.9.2. Ideal Solution
      1.9.3. Nonideal Solution
      1.10. Activity Coefficient
      1.11. Relation between γi and G E
      1.11.1. Pressure and Temperature Derivative of γi
      1.12. Activity Coefficient Models
      1.12.1. Margules Activity Coefficient Equations
      1.12.2. Van Laar Activity Coefficient Equations
      1.12.3. Scatchard-Hildebrand Regular-Solution Activity Coefficients
      1.12.4. Flory-Huggins Polymer-Solution Activity Coefficients
      1.13. Legendre Transformation
      1.14. Jacobian Transformation
      1.15. Maxwell's Relations
      1.16. Examples and Theory Extension
      1.17. Problems
      1.18. References
      2.1. Equilibrium Condition under the Influence of Gravity
      2.1.1. Conditions for Pronounced Compositional Variation
      2.2. Equilibrium Condition for Curved Interfaces
      2.2.1. Effect of Curvature on Saturation Pressure: Condensation and Vaporization in Porous Media
      2.3. Equilibrium Condition for Charged Systems
      2.3.1. Electrostatic Energy of a Sphere with Uniform Charge
      2.3.2. Criteria of Equilibrium for a Charged System
      2.4. Examples and Theory Extension
      2.5. Problems
      2.6. References
      3.1. EOS Representation of Volumetric and Phase Behavior
      3.1.1. Algebraic Form of Cubic Equations
      3.1.2. Peng-Robinson Equation of State (PR-EOS)
      3.1.3. Phase Behavior of Mixtures with Well-Defined Components
      3.1.4. Reservoir Fluid Phase Behavior and Volumetric Properties
      3.1.5. CO2 Dissolution in Petroleum Fluids and Property Changes
      3.2. Associating Species
      3.3. Cubic-Plus-Association Equation of State
      3.3.1. CPA-EOS
      3.3.2. Water-Containing Mixtures
      3.3.3. Asphaltene Precipitation Modeling
      3.4. Two-Phase Isothermal Compressibility
      3.5. Two-Phase Isentropic Compressibility and Two-Phase Sonic Velocity
      3.6. Single-Phase Sonic Velocity and Temperature Change due to Expansion
      3.6.1. Heating and Cooling due to Expansion
      3.7. Examples and Theory Extension
      3.8. Problems
      3.9. References
      4.1. Stability Analysis and Stability Limit
      4.1.1. Stability Analysis for a Single-Component
      4.1.2. Stability Analysis in a Two-Component System
      4.1.3. Stability Analysis for Multicomponent Mixtures
      4.2. Criticality Analysis
      4.2.1. Single-Component Fluid
      4.2.2. Two-Component Fluid
      4.2.3. Multicomponent Fluid
      4.3. Alternative Approach for Critical-Point Calculation
      4.3.1. Single-Component Fluids
      4.3.2. Two-Component Fluids
      4.3.3. Three-Component Fluids
      4.4. Examples and Theory Extension
      4.5. Problems
      4.6. References
      5.1. Gibbs Free Energy Surface Analysis
      5.2. Tangent-Plane Distance (TPD) Analysis
      5.3. Stability Testing
      5.3.1. SSI Method
      5.3.2. Newton Method
      5.4. Two-Phase Split Computations
      5.4.1. SSI Method
      5.4.2. Newton Method
      5.5. Three-Phase Split Calculations
      5.5.1. SSI Method
      5.5.2. Newton Method
      5.6. Direct Minimization of Gibbs Free Energy in Multiphase Split Calculation
      5.7. Phase-Split Calculations in Reduced Space
      5.7.1. Zero Interaction Coefficients
      5.7.2. Nonzero Interaction Coefficients
      5.8. Critical-Point Calculation
      5.8.1. Numerical Solution
      5.8.2. One-D Search
      5.8.3. Initial Guess
      5.9. Examples and Theory Extension
      5.10. Problems
      5.11. References
      6.1. Irreversibility in a Closed System
      6.1.1. Entropy Production Strength
      6.2. Derivation of Diffusion Flux and Diffusion Coefficients in Multicomponent Mixtures
      6.2.1. Phenomenological Laws of Irreversible Thermodynamics
      6.2.2. Diffusion Mass Flux
      6.2.3. Thermal Convection
      6.2.4. Natural Convection and Diffusion in Porous Media
      6.2.5. Compositional Variation in Hydrocarbon Reservoirs
      6.3. Prediction of Past Climate Changes from Irreversible Thermodynamics
      6.3.1. Ice Core Data
      6.3.2. Sampling
      6.3.3. Ice Dating
      6.3.4. Trapped Air Dating
      6.3.5. Temperature Modeling
      6.4. Examples and Theory Extension
      6.5. Problems
      6.6. Appendix
      6.6.1. Scalars, Vectors, Tensors, and their Products
      6.6.2. Multiplication of a Vector by a Scalar
      6.6.3. Scalar Product or Dot Product (·) of Two Vectors
      6.7. References
      7.1. Plane Interface
      7.2. Curved Interface
      7.3. Thermodynamic Functions
      7.4. Effect of Curvature on Interfacial Tension
      7.5. Work of Cluster Formation: Single-Component Systems
      7.5.1. Spherical Clusters
      7.5.2. Incompressible Clusters
      7.5.3. Gas Clusters
      7.6. Cap-Shaped Clusters
      7.7. Derivation of the Young Equation
      7.8. Driving Force (AA)
      7.8.1. Condensation from Vapor at Constant T
      7.8.2. Evaporation from Liquid at Constant T
      7.9. Thermodynamic Functions and Gibbs Adsorption Equation without Chemical Equilibrium
      7.10. Helmholtz Free Energy of an Open System
      7.11. Relation between [µ]'i, [µ]''i, [µ]si and [µ]'i, [µ]''i, [µ]si
      7.12. Fundamental Equation of the Interface
      7.12.1. Adsorption at the Interface
      7.12.2. Work of Cluster Formation in a Multicomponent Mixture
      7.13. Examples and Theory Extension
      7.14. Problems
      7.15. References
      8.1. Pressure Anisotropy in the Film
      8.2. Thin Liquid Film Work and Energy
      8.3. Equilibrium Conditions
      8.3.1. Mechanical Equilibrium
      8.3.2. Augmented Young Equation
      8.4. Film Tension
      8.5. Thermodynamic Functions of the Thin Liquid Film
      8.6. Relations between Disjoining Pressure and Contact Angle
      8.7. Example and Theory Extension
      8.8. Problems
      8.9. References.
    Session Timeout
    New Session