New Search Search History

Holdings Information

    Theory of machines and mechanisms / John J. Uicker, Jr., Professor Emeritus of Mechanical Engineering, University of Wisconsin--Madison, Gordon R. Pennock, Associate Professor of Mechanical Engineering, Purdue University, Joseph E. Shigley, Late Professor Emeritus of Mechanical Engineering, The University of Michigan.

    • Title:Theory of machines and mechanisms / John J. Uicker, Jr., Professor Emeritus of Mechanical Engineering, University of Wisconsin--Madison, Gordon R. Pennock, Associate Professor of Mechanical Engineering, Purdue University, Joseph E. Shigley, Late Professor Emeritus of Mechanical Engineering, The University of Michigan.
    •    
    • Author/Creator:Uicker, John Joseph, author.
    • Other Contributors/Collections:Pennock, G. R., author.
      Shigley, Joseph Edward, author.
    • Published/Created:New York : Oxford University Press, [2017]
    • Holdings

       
    • Library of Congress Subjects:Mechanical engineering.
    • Edition:Fifth edition.
    • Description:xxvi, 950 pages ;. 25 cm
    • Notes:First-second editions by Joseph E. Shigley.
      Includes bibliographical references and index.
    • ISBN:9780190264482
      0190264489
      9780190658908
      0190658908
    • Contents:Machine generated contents note: 1. World of Mechanisms
      1.1. Introduction
      1.2. Analysis and Synthesis
      1.3. Science of Mechanics
      1.4. Terminology, Definitions, and Assumptions
      1.5. Planar, Spheric, and Spatial Mechanisms
      1.6. Mobility
      1.7. Characteristics of Mechanisms
      1.8. Kinematic Inversion
      1.9. Grashof's Law
      1.10. Mechanical Advantage
      1.11. References
      Problems
      2. Position, Posture, and Displacement
      2.1. Locus of a Moving Point
      2.2. Position of a Point
      2.3. Position Difference Between Two Points
      2.4. Apparent Position of a Point
      2.5. Absolute Position of a Point
      2.6. Posture of a Rigid Body
      2.7. Loop-Closure Equations
      2.8. Graphic Posture Analysis
      2.9. Algebraic Posture Analysis
      2.10. Complex-Algebraic Solutions of Planar Vector Equations
      2.11. Complex Polar Algebra
      2.12. Posture Analysis Techniques
      2.13. Coupler-Curve Generation
      2.14. Displacement of a Moving Point
      2.15. Displacement Difference Between Two Points
      2.16. Translation and Rotation
      2.17. Apparent Displacement
      2.18. Absolute Displacement
      2.19. Apparent Angular Displacement
      2.20. References
      Problems
      3. Velocity
      3.1. Definition of Velocity
      3.2. Rotation of a Rigid Body
      3.3. Velocity Difference Between Points of a Rigid Body
      3.4. Velocity Polygons; Velocity Images
      3.5. Apparent Velocity of a Point in a Moving Coordinate System
      3.6. Apparent Angular Velocity
      3.7. Direct Contact and Rolling Contact
      3.8. Systematic Strategy for Velocity Analysis
      3.9. Algebraic Velocity Analysis
      3.10. Complex-Algebraic Velocity Analysis
      3.11. Method of Kinematic Coefficients
      3.12. Instantaneous Centers of Velocity
      3.13. Aronhold-Kennedy Theorem of Three Centers
      3.14. Locating Instantaneous Centers of Velocity
      3.15. Velocity Analysis Using Instant Centers
      3.16. Angular-Velocity-Ratio Theorem
      3.17. Relationships Between First-Order Kinematic Coefficients and Instant Centers
      3.18. Freudenstein's Theorem
      3.19. Indices of Merit; Mechanical Advantage
      3.20. Centrodes
      3.21. References
      Problems
      4. Acceleration
      4.1. Definition of Acceleration
      4.2. Angular Acceleration
      4.3. Acceleration Difference Between Points of a Rigid Body
      4.4. Acceleration Polygons; Acceleration Images
      4.5. Apparent Acceleration of a Point in a Moving Coordinate System
      4.6. Apparent Angular Acceleration
      4.7. Direct Contact and Rolling Contact
      4.8. Systematic Strategy for Acceleration Analysis
      4.9. Algebraic Acceleration Analysis
      4.10. Complex-Algebraic Acceleration Analysis
      4.11. Method of Kinematic Coefficients
      4.12. Euler-Savary Equation
      4.13. Bobillier Constructions
      4.14. Instantaneous Center of Acceleration
      4.15. Bresse Circle (or de La Hire Circle)
      4.16. Radius of Curvature of a Point Trajectory Using Kinematic Coefficients
      4.17. Cubic of Stationary Curvature
      4.18. References
      Problems
      5. Multi-Degree-of-Freedom Mechanisms
      5.1. Introduction
      5.2. Posture Analysis; Algebraic Solution
      5.3. Velocity Analysis; Velocity Polygons
      5.4. Instantaneous Centers of Velocity
      5.5. First-Order Kinematic Coefficients
      5.6. Method of Superposition
      5.7. Acceleration Analysis; Acceleration Polygons
      5.8. Second-Order Kinematic Coefficients
      5.9. Path Curvature of a Coupler Point Trajectory
      5.10. Finite Difference Method
      5.11. Reference
      Problems
      6. Cam Design
      6.1. Introduction
      6.2. Classification of Cams and Followers
      6.3. Displacement Diagrams
      6.4. Graphic Layout of Cam Profiles
      6.5. Kinematic Coefficients of Follower
      6.6. High-Speed Cams
      6.7. Standard Cam Motions
      6.8. Matching Derivatives of Displacement Diagrams
      6.9. Plate Cam with Reciprocating Flat-Face Follower
      6.10. Plate Cam with Reciprocating Roller Follower
      6.11. Rigid and Elastic Cam Systems
      6.12. Dynamics of an Eccentric Cam
      6.13. Effect of Sliding Friction
      6.14. Dynamics of Disk Cam with Reciprocating Roller Follower
      6.15. Dynamics of Elastic Cam Systems
      6.16. Unbalance, Spring Surge, and Windup
      6.17. References
      Problems
      7. Spur Gears
      7.1. Terminology and Definitions
      7.2. Fundamental Law of Toothed Gearing
      7.3. Involute Properties
      7.4. Interchangeable Gears; AGMA Standards
      7.5. Fundamentals of Gear-Tooth Action
      7.6. Manufacture of Gear Teeth
      7.7. Interference and Undercutting
      7.8. Contact Ratio
      7.9. Varying Center Distance
      7.10. Involutometry
      7.11. Nonstandard Gear Teeth
      7.12. Parallel-Axis Gear Trains
      7.13. Determining Tooth Numbers
      7.14. Epicyclic Gear Trains
      7.15. Analysis of Epicyclic Gear Trains by Formula
      7.16. Tabular Analysis of Epicyclic Gear Trains
      7.17. References
      Problems
      8. Helical Gears, Bevel Gears, Worms, and Worm Gears
      8.1. Parallel-Axis Helical Gears
      8.2. Helical Gear Tooth Relations
      8.3. Helical Gear Tooth Proportions
      8.4. Contact of Helical Gear Teeth
      8.5. Replacing Spur Gears with Helical Gears
      8.6. Herringbone Gears
      8.7. Crossed-Axis Helical Gears
      8.8. Straight-Tooth Bevel Gears
      8.9. Tooth Proportions for Bevel Gears
      8.10. Bevel Gear Epicyclic Trains
      8.11. Crown and Face Gears
      8.12. Spiral Bevel Gears
      8.13. Hypoid Gears
      8.14. Worms and Worm Gears
      8.15. Summers and Differentials
      8.16. All-Wheel Drive Train
      8.17. Note
      Problems
      9. Synthesis of Linkages
      9.1. Type, Number, and Dimensional Synthesis
      9.2. Function Generation, Path Generation, and Body Guidance
      9.3. Two Finitely Separated Postures of a Rigid Body (N = 2)
      9.4. Three Finitely Separated Postures of a Rigid Body (N = 3)
      9.5. Four Finitely Separated Postures of a Rigid Body (N = 4)
      9.6. Five Finitely Separated Postures of a Rigid Body (N = 5)
      9.7. Precision Postures; Structural Error; Chebyshev Spacing
      9.8. Overlay Method
      9.9. Coupler-Curve Synthesis
      9.10. Cognate Linkages; Roberts-Chebyshev Theorem
      9.11. Freudenstein's Equation
      9.12. Analytic Synthesis Using Complex Algebra
      9.13. Synthesis of Dwell Linkages
      9.14. Intermittent Rotary Motion
      9.15. References
      Problems
      10. Spatial Mechanisms and Robotics
      10.1. Introduction
      10.2. Exceptions to the Mobility Criterion
      10.3. Spatial Posture-Analysis Problem
      10.4. Spatial Velocity and Acceleration Analyses
      10.5. Euler Angles
      10.6. Denavit-Hartenberg Parameters
      10.7. Transformation-Matrix Posture Analysis
      10.8. Matrix Velocity and Acceleration Analyses
      10.9. Generalized Mechanism Analysis Computer Programs
      10.10. Introduction to Robotics
      10.11. Topological Arrangements of Robotic Arms
      10.12. Forward Kinematics Problem
      10.13. Inverse Kinematics Problem
      10.14. Inverse Velocity and Acceleration Analyses
      10.15. Robot Actuator Force Analysis
      10.16. References
      Problems
      11. Static Force Analysis
      11.1. Introduction
      11.2. Newton's Laws
      11.3. Systems of Units
      11.4. Applied and Constraint Forces
      11.5. Free-Body Diagrams
      11.6. Conditions for Equilibrium
      11.7. Two- and Three-Force Members
      11.8. Four- and More-Force Members
      11.9. Friction-Force Models
      11.10. Force Analysis with Friction
      11.11. Spur- and Helical-Gear Force Analysis
      11.12. Straight-Tooth Bevel-Gear Force Analysis
      11.13. Method of Virtual Work
      11.14. Introduction to Buckling
      11.15. Euler Column Formula
      11.16. Critical Unit Load
      11.17. Critical Unit Load and Slenderness Ratio
      11.18. Johnson's Parabolic Equation
      11.19. References
      Problems
      12. Dynamic Force Analysis
      12.1. Introduction
      12.2. Centroid and Center of Mass
      12.3. Mass Moments and Products of Inertia
      12.4. Inertia Forces and d'Alembert's Principle
      12.5. Principle of Superposition
      12.6. Planar Rotation about a Fixed Center
      12.7. Shaking Forces and Moments
      12.8. Complex-Algebraic Approach
      12.9. Equation of Motion from Power Equation
      12.10. Measuring Mass Moment of Inertia
      12.11. Transformation of Inertia Axes
      12.12. Euler's Equations of Motion
      12.13. Impulse and Momentum
      12.14. Angular Impulse and Angular Momentum
      12.15. References
      Problems
      13. Vibration Analysis
      13.1. Differential Equations of Motion
      13.2. Vertical Model
      13.3. Solution of the Differential Equation
      13.4. Step Input Forcing
      13.5. Phase-Plane Representation
      13.6. Phase-Plane Analysis
      13.7. Transient Disturbances
      13.8. Free Vibration with Viscous Damping
      13.9. Damping Obtained by Experiment
      13.10. Phase-Plane Representation of Damped Vibration
      13.11. Response to Periodic Forcing
      13.12. Harmonic Forcing
      13.13. Forcing Caused by Unbalance
      13.14. Relative Motion
      13.15. Isolation
      13.16. Rayleigh's Method
      13.17. First and Second Critical Speeds of a Shaft
      13.18. Torsional Systems
      13.19. References
      Problems
      14. Dynamics of Reciprocating Engines
      14.1. Engine Types
      14.2. Indicator Diagrams
      14.3. Dynamic Analysis-General
      14.4. Gas Forces
      14.5. Equivalent Masses
      14.6. Inertia Forces
      14.7. Bearing Loads in a Single-Cylinder Engine
      14.8. Shaking Forces of Engines
      14.9. Computation Hints
      Problems
      Contents note continued: 15. Balancing
      15.1. Static Unbalance
      15.2. Equations of Motion
      15.3. Static Balancing Machines
      15.4. Dynamic Unbalance
      15.5. Analysis of Unbalance
      15.6. Dynamic Balancing
      15.7. Dynamic Balancing Machines
      15.8. Field Balancing with a Programmable Calculator
      15.9. Balancing a Single-Cylinder Engine
      15.10. Balancing Multi-Cylinder Engines
      15.11. Analytic Technique for Balancing Multi-Cylinder Engines
      15.12. Balancing Linkages
      15.13. Balancing of Machines
      15.14. References
      Problems
      16. Flywheels, Governors, and Gyroscopes
      16.1. Dynamic Theory of Flywheels
      16.2. Integration Technique
      16.3. Multi-Cylinder Engine Torque Summation
      16.4. Classification of Governors
      16.5. Centrifugal Governors
      16.6. Inertia Governors
      16.7. Mechanical Control Systems
      16.8. Standard Input Functions
      16.9. Solution of Linear Differential Equations
      16.10. Analysis of Proportional-Error Feedback Systems
      16.11. Introduction to Gyroscopes
      16.12. Motion of a Gyroscope
      16.13. Steady or Regular Precession
      16.14. Forced Precession
      16.15. References
      Problems
      Appendix A: Tables
      Table 1 Standard SI Prefixes
      Table 2 Conversion from US Customary Units to SI Units
      Table 3 Conversion from SI Units to US Customary Units
      Table 4 Properties of Areas
      Table 5 Mass Moments of Inertia
      Table 6 Involute Function
      Appendix B: Answers to Selected Problems.
    Session Timeout
    New Session